Elina Wathén

Supporting Communication between Stakeholders Involved in Industrial Doctoral Projects by a Process Steering Instrument


Industrial doctoral projects are defined as projects that promote knowledge transfer between universities and commercial organisations and nurture innovation. These projects are founded on needs identified within business organisations and researchers from related research areas. The projects last approximately five years in Sweden[1]. A typical project involves a doctoral student and stakeholders from academia and industry who have different priorities and areas of expertise. The project is usually co-financed by research funding agencies, often within the framework of larger research projects, research environments or schools. Unfortunately, many projects of this nature are interrupted, take an unnecessarily long time to reach their objectives or do not meet all the stakeholders’ requirements.

The characteristics of an industrial doctoral projects are seldom taken into account in the assessments, rules and regulations for doctoral projects. The traditional goal of the doctoral programme and thesis is to demonstrate the candidate’s ability to conduct independent research on a novel concept and to communicate the results in an accessible way (Gould, 2016: p 27). In terms of knowledge, skills and competences, this overall aim can be formulated somewhat differently depending on the university and the programme, and does not include applicability to a specific context. While research applicability is requested for all doctoral theses (see e.g. Norell Bergendahl et al., 2004; Nature Editorial, 2016), the value of a doctoral project to non-academic stakeholders is seldom known and assessed in formal evaluations, i.e. goals and regulations do not necessarily take into consideration whether a project is an industrial doctoral project or not.

The hypothesis behind this study is that systematic communication increases the possibility of succeeding with industrial doctoral projects. The success of a project means continuously demonstrating relevant values throughout the whole project and concluding it by successfully defending a PhD thesis that is beneficial to all the parties involved. Systematic communication should include business values and use terminology that is understandable to all the stakeholders.

The overall aim of this paper is to contribute to a better understanding of industrial doctoral projects in modern educational environments where the stakeholders come from both academia and industry. It discusses the role of the doctoral students and the evolving process around their projects in environments at the interface between academic culture and industrial traditions. This is done by presenting the construction and use of a supporting instrument at an industrial research school specialising in applied informatics and the evaluation of the instrument. The following questions are examined:

  1. How can industrial doctoral projects take into account process steering instruments?
  2. How can a process steering instrument be used at a research school?

Based on the rules and regulations and stakeholder requirements, with a focus on the value creation, and coupled with a short presentation of the development of the process steering model presented in part earlier (Heldal et al., 2014), this paper includes new data from meetings and interviews with stakeholders after three years of use. The data is discussed in view of documents and literature ensuring successful completion of industrial doctoral projects.

The structure of the paper is as follows: Section 2 presents previous research results dealing with issues that support or impede knowledge transfer between academia and industry and the requirements for running academic projects that are relevant in practice. Section 3 describes the Methodology, Section 4 the basic components in the design of a process steering instrument that is called Thesis Steering Model (TSM). Section 5 presents experiences from the introduction of TSM and during the three first years of use. Section 6 discusses the findings, with the literature as a background and Section 7 concludes the paper.

While the overall aims of a doctoral project – producing new academic values and demonstrating the capacity to perform independent research – are not questioned, the paper focuses in the first instance on the interests of industrial stakeholders and the support they can provide for industrial doctoral projects. Moreover, the role of management in involving all stakeholders interested in industrial doctoral projects is also discussed. The current limitation can be the relatively short time, acquiring a better understanding of the influence of process steering methods may require further investigation in a longer time perspective. Three years may be quite a short period of time to carry out a more rigorous evaluation of the effectiveness of such instruments.

2. Background

Good industrial doctoral projects need to deal with cultural differences between the environments in question and the roles and responsibilities of the stakeholders, including uneasy decision-making situations. In order to identify possible areas of support, this section focuses on the identified problems and benefits outlined in the literature and in current steering documents in Sweden.

2.1. Two different cultures: University and Business

The different countries in Europe and in the European Union invest huge resources in industrial doctoral projects (Schiermeier, 2012; Borrell-Damian, 2009). While the importance of university-industry collaboration via different projects is recognised, the innovations achieved are often considered to be ‘smaller’ in contrast to real breakthroughs. As regards doctoral projects, stakeholders from academia respect that in the first instance it should be the goals set by universities and at national level that regulate projects. Stakeholders in industrial contexts recognize this; however, they would like to understand and follow their ‘own’ doctoral projects. While, they are familiar with the use of process steering instruments as a means of aligning important partial goals to the overall goals in long-term projects, they are not necessarily as familiar with long-term academic projects where the partial goals are, e.g. research proposal seminar, paper x, licentiate thesis etc. The academic doctoral projects do not have business values, deliverables aligning to overall progress, potential commercialization plans, clear process owners etc. Not understanding the major goals and the plan, could jeopardise the progress of the doctoral project since knowledge does not per se flow between the academic and industrial sphere (Hermans and Castiaux, 2007), coordination takes time, and requires careful planning.

An extensive investigation of problems experienced by four different industrial research schools within engineering fields was carried out by Wallgren (2007). She clearly identified a vast gap in understanding between industry and academia; a gap that can cause serious problems for industrial doctoral projects. This can be experienced by the students in the form of inadequate information transfer between the two environments, poor understanding of the business values, a lack of understanding of the economic conditions behind the projects, inadequate control by the companies, problems with supervisors, and the feeling that they are alone when building a bridge between academia and industry.

According to an extensive background examination in the doctoral thesis by Julie Hermans (2011), successful collaborative research and development projects run by academia and industry need to recognise (1) the two-way relationship between the different environments, (2) focus on knowledge co-creation as a process, and (3) have active and supportive social milieus around the projects. She argues in favour of considering a longitudinal and situated approach to nurture good applied projects. Following established approaches for applied and interdisciplinary research could be questionable. This is particularly the case for highly interdisciplinary fields within informatics, as understanding knowledge creation in applied research is often insufficient. Cross-disciplinary boundaries need to be considered for several activities – in order to follow interdisciplinary courses for example (Bergeå et al., 2006). It is highly debatable how one and the same study can follow existing institutional research traditions (Evans and Marvin, 2006) or cross certain disciplinary boundaries (Lowe and Phillipson, 2009) in order to produce new scientific knowledge.

If the most important aspects of successful industrial doctoral projects require awareness of each other’s environment and culture (e.g. Wallgren and Dahlgren, 2005) and project completion in time (Manathunga, 2005) the varying role of the supervisor is probably the most important (e.g. Grant, 2005; Lee, 2008) that directly influences awareness and completion. The relation between the supervisor and doctoral student is highly debated (McCallin and Nayar, 2012; Deuchar, 2008), especially considering the involvement of industrial supervisors with currently unspecified roles (Salminen-Karlsson and Wallgren, 2008). However, industrial supervisors are undoubtedly influence the flow and results. If the academic and industrial stakeholders are not coordinated a doctoral project can meet conflicting requirements (Morris et al., 2012). In order to solve problems such as these, both the different supervisors and the student should assume the role of negotiator and translator (Strengers, 2014). Success is more likely can be achieved if there is good communication and a joint decision-making involving both university and industrial partners (Salimi et al., 2016). This position is only possible with a high degree of involvement which, apart from having the right professional expertise, also needs personal skills (Malfroy, 2011) and longitudinal planning (Thune, 2009).

To plan industrial doctoral projects are subject to debate at different levels. The definitions of values certainly can and need to be discussed when studies argue in favour of using entrepreneurial methods for value creation (Lackéus and Williams Middleton, 2015). While the aim of this paper is not to promote industrial development directly but to do so via new scientific knowledge, consideration must be given to the environment in long-term projects if values are to be of interest. Methods and terminology from industry must be taken into account when projects include business stakeholders and when the aim is to achieve employability at business companies (Harman, 2004).

2.2 Influences of industrial stakeholders

For complex industrial projects where no individual stakeholder has the competence to understand and control the entire activity, it is common to work with processes. Processes help to handle and bring order to activity flows that include tasks, players, resources and peripheral players. This is the case for large companies in Sweden, including ABB (Gustavsen et al., 1996), Volvo (Eneroth et al., 2009) and Ericsson (Ericsson, 2012), companies highly involved in industrial doctoral projects.

As an example, the IS-GDP (Information Systems Global Development Process) is one such process, developed at Volvo IT and intended for use in complex IT projects and a refinement of the more general Global Development Process (GDP) at the Volvo Group (Eneroth et al., 2009). The process is defined as a procedure for a repeated activity, such as a production line, a computer algorithm or a code. Given standardised input of the right quality, the process delivers standardised output of the desired quality. Central to the process concept is what should be agreed on in the different process steps, not how or by whom. While the structure for doctoral processes can be the same, the progress and the content toward achieving the main goals are usually different (Newbury, 2003).

Since doctoral students need to be aware of the different ways in which academia and industry gather and handle knowledge (Ivček and Galinac, 2008) and possible differences in terminology during a long-term industrial doctoral project, it is important to clarify whether main values are understood in the same way during the key steps that have been identified. To overcome any misunderstanding of complex industrial contexts, where no individual stakeholder has the competence to understand and control the entire activity, processes can be used to manage projects. Ankrah and Tabbaa use a process approach to summarise a systematic review of university-industry collaboration (2015). Their process approach begins with establishing collaboration, moves on to defining organisational forms and operationalising activities, and ends with investigating outcomes. This study is focusing on developing a model to define forms of collaboration and support communication around activities and partial goals.

2.3 The Swedish doctoral process

Previously, a full-time doctoral programme took an average of four years’ full-time study. That has now risen to a longer time due to other duties and interruptions, such as teaching, project work, parental leave, sickness etc. Certain requirements need to be fulfilled during each doctoral period (see Figure 1).

Figure 1. The PhD process in Sweden (picture by courtesy of Wallgren and Dahlgren, 2007, p. 434). Illustrated is a four-year, full-time PhD project from commencement (A) through individual study plans (IS[2], one per year), Intr (Introductory seminar), thesis proposal (TP) and a mid-term, i.e. licentiate (Lic) seminar and the thesis (Ph.D.) seminar. Figure 1. The PhD process in Sweden (picture by courtesy of Wallgren and
Dahlgren, 2007, p. 434). Illustrated is a four-year, full-time PhD project from
commencement (A) through individual study plans (IS[2], one per year), Intr
(Introductory seminar), thesis proposal (TP) and a mid-term, i.e. licentiate
(Lic) seminar and the thesis (Ph.D.) seminar. 

When a doctoral project commences, many doctoral students and their supervisor(s) from industry are not aware of the academic doctoral process and the requirements that emerge during this process. The students and their supervisors do not necessarily have full knowledge of the business value of their concrete research ideas. Careful guidance through the process is essential, particularly at the beginning when research problems are formulated. This problem formulation is a key area that can set the tone, expectations and conditions for the doctoral student and her/his progress for years to come. It is important for all stakeholders (doctoral students, supervisors and mentors) to realise that problems cannot be identified in isolation by one or two parties. Instead, they must be identified through collaboration in order to ensure value and benefit for all concerned and that the doctoral project is supported by everyone (Wallgren and Hägglund, 2004). ‘

3. Methodology

Handling multiple targets and acquiring a mutual understanding that creation of added values are key issues to ensure the best possible synergy effects. The results describe the development and use of a process steering instrument, which was used for doctoral projects at an industrial research school specialising in informatics – ApplyIT. The instrument is named Thesis Steering Model (TSM). Section 4 presents TSM, developed to plan structured up meetings for all stakeholders based on academic and industrial requirements. Section 5 presents the evaluation. This is done via participatory observations from the responsible management group for TSM. The management groups incorporated three persons belonging to the management group of the school. This study contains data from 19 gate meetings (about the gate meetings, see Section 4.2), examining documents from TSM, and informal conversations with the stakeholders during the first three years of usage. To answer the research questions results from 12 semi-structured interviews were used, with 6 doctoral students, 3 industrial stakeholders and 3 academic stakeholders performed 2015 and 2016.

4. Development of a process steering instrument for industrial doctoral projects

Previous sections have shown that a number of challenges can arise in a doctoral project and collaboration, handling multiple values and acquiring a mutual understanding of those values are key issues to ensure the best possible synergy effects. This section argues in favour of and describes the development and use of a process steering instrument, which was used for projects at an industrial research school specialising in informatics ApplyIT[3].

4.1 Incorporating knowledge from different cultures

Having identified underlying problems in industrial doctoral projects, as well as the potential usefulness of the process concept from industry and the requirements for successful completion of doctoral projects, the management group from the industrial research school decided to couple this with their own experiences and develop a formal instrument to support doctoral projects. The instrument, called Thesis Steering Model (TSM), was developed alongside the task of defining the basics, starting up the research school and identifying the needs of the first PhD students.

TSM is an abstract structure for predefined meetings where each step aligns the main educational requirements to the main activities deriving from existing industrial process steering instruments. The content depends on finding the right doctoral project and focuses on values, aims, progress, activities, risks, resources and basic terminology. TSM is a methodology driven by scientific requirements and business needs. The activities are enhanced and intense, especially during the start-up phase, and are intended to support systematic encounters between stakeholders throughout the entire doctoral project.

The main steps during a doctoral process that are known to the university stakeholders are not necessarily known to the industrial stakeholders. Likewise, the main steps in industrial processes are not necessarily known in an academic environment. Following examination of a wide range of industrial process steering instruments, the study focused on a simplified and more generalised instrument. This generalised instrument was based in the first instance on instruments from the industrial stakeholders from the research school. The steps in TSM are meetings that are important to the academic process but which also take into account the industrial process (see Figure 2). While TSM focuses on the mandatory aspects, in the first instance the academic process, characteristics from the industrial process are also in focus.

Figure 2. The TSM considers the academic process for a doctoral project and important steps taken from project steering instruments used in industry.
Figure 2. The TSM considers the academic process for a doctoral project and important steps taken from project steering instruments used in industry.

Beginning and successfully ending a doctoral project via requirements from academia is important. Conveying the terminology related to duties and progress via the generalised process steering instrument known to the industrial stakeholders clarifies eventual misunderstanding and promotes discussion about current values and goals.

In order to identify important steps for TSM, local university and national requirements for doctoral projects in Sweden are considered together with experience gained from industrial process steering instruments. Most doctoral projects at Swedish universities comprise five important steps: admission, suggesting a research proposal, obtaining a licentiate (mid-term seminar), a concluding[4] seminar, and a public defence. In addition, annual continuous progress plans, known as Individual Study Plans (ISP), must be set out at the doctoral student’s research location. This plan shows the current status of the doctoral project but seldom the progress made in relation to previous plans (Thune, 2009; Vesterlund, 2015). To show progress processes steering instrument can be used to emphasise negotiations for key steps for the different stakeholders. These negotiations are particularly important during the early stages of a project (Strengers, 2014). Examples of values that need common agreement include partial goals, associated resources, managing changes, participation levels and issues related to the roles and responsibilities of the parties involved.

TSM was developed by the management group of ApplyIT to provide evidence of progress, ensuring that

  • a project group that aims to start and support a doctoral project is formed
  • innovation techniques are used to generate and identify research ideas more quickly
  • time and other resources are allocated already from the idea generation phase
  • important milestones and stages in a doctoral project are identified and facilitated through scheduled communication and collaboration meetings
  • academic values in terms of scientific significance and business value are discussed at each meeting
  • the terminology is widely understood and the process is transparent
  • progress reports are produced based on common agreements between all key stakeholders after each meeting
  • a focus is maintained on overall goals as well as awareness of any deviations that may arise at a meeting and within each identified step
  • the progress goals are revised and aligned to the overall goals

Therefore, a project group consisting of the PhD student, the supervisor, the assistant supervisor(s) and the industrial mentor(s)[5] was formed for each PhD project. They were obliged to participate in a number of meetings, as described in Section (3.2) below. In order to allocate responsibility as close as possible to the work that was being conducted, the PhD student was appointed to act as project leader and the person responsible for the content of the meetings. This naturally meant that she or he would initially need a great deal of support from all the parties involved.

The progress of every doctoral project needs to be monitored by a project steering group consisting of the project group members and at least one person from the industrial research school management group. The involvement of external individuals from the school in longitudinal plans for doctoral projects alongside the members of the project group, coupled with the use of TSM, is new and unique in Sweden for the industrial doctoral project administration.

4.2 TSM: an instrument that supports systematic collaboration in doctoral projects

The TSM is an instrument for longitudinal support based on seven or so gates (see Figure 3). Each gate involves an associated gate meeting with systematic and thematic questions that are set out in templates (15 active slides for each meeting), and which need to be answered prior to each gate meeting. The answers to these questions require a great deal of teamwork on the part of the project group. The TSM is thus not a quick fix guide to pass the gates but more a process tool to get communication flowing in the project group and to harmonise the members’ expectations by identifying and discussing scientific requirements and possible associated business values.

Depending on the project and the familiarity of the project group with process steering tools, the preparation before each gate meeting takes a few days. As the templates for the different meetings are related to each other, the work involved in understanding the structure of a meeting decreases after each gate meeting. The presentation of the templates at the gate meetings usually leads to further discussion.

The TSM aims to achieve the following:

  • Describe what needs to be done (generate ideas and plan activities) and when they should be done (by identifying important phases and elements as ‘gates’), but leave the how question to the project group.
  • Provide guidance, support and quality assurance for the research projects by going through a series of gates, where each gate represents a key phase with associated templates.
  • Support communication between the academic and industrial partners and follow this up at systematically planned meetings. The partners need to come up with a mutual agreement and understanding of the goals behind the doctoral project at each gate a) by formalising concrete goals and decisions regarding time, resources, quality and content and b) by ensuring that key issues have been covered and the right resources of the expected quality and content are available.
  • Provide a skeleton to ensure appropriate areas are documented sufficiently with regard to important decisions and individual project requirements.
  • Be easily understood by all the parties, regardless of their background.
  • Bring transparency and control into project monitoring by focusing on the importance of commitment, common sense, cooperation and active involvement and by highlighting potential risks before they become a problem.
  • If possible, generate synergy effects between the doctoral projects.

 TSM have the following gates:

At the Start Gate the project group is formed and the project vision and expectations are formulated in general terms and are agreed on in order to commence the pre-study. Initial scanning of related work is carried out with a focus on novelty assessment. The pre-study ends with the Vision Gate, which is where multiple project visions are generated. Several possible ideas have been investigated and possible goals and research problems have been formulated. Related research from other parties and potential external cooperation environments have been considered. The vision of the project has become clearer.

At the Concept Gate, the main feasible research goals are discussed and ways of reaching these are examined. The research background needed is discussed together with possible external cooperation environments and experts and the potential for collaboration. At the Development Gate clear targets, plans and methods to achieve the research aims are formulated. The resources needed to do so are planned and secured from all stakeholders. These four early gates are the most important gates and correspond to the convergence in the funnel model used in innovation theory.

The Follow-up Gate aims to discuss the mid-term seminar and future plans. Several Follow-up gate meetings can be requested, depending on the doctoral project. The formal concluding gates are the Thesis Gate, which involves preparing for a formal pre-defence and defence, and the End Gate, which involves concluding current collaboration and preparing for future collaboration, and ends the series of TSM meetings. The correspondence between scientific magnitude and business value is considered at all gates.


Figure 3. A general overview of the doctoral project from the point of view of the TSM.
Figure 3. A general overview of the doctoral project from the point of view of the TSM.

The four most important values – research quality, progress towards examination, associated business values and overall project control – as streamlines are shown in Figure 3. These are discussed at each gate. As an example, the increased number of ideas and visions and the width of the Vision Gate will converge towards the concrete aims at the Development Gate.

3.3 Gate meetings

Seven gate meetings are intended to take place at well-defined stages in the project, depending on the progress and the degree of activity of the doctoral student. A student usually spends 80% of her/his time working on the project and the remaining time is taken up with working in industry or teaching. As a result, her/his PhD project may take five years.

The first three gates occur relatively early on in the doctoral project. A formal progress sign-off meeting (i.e. a workshop) is planned at each gate. At each gate-opening meeting a discussion takes place within the project steering group, based on the preliminary work carried out within the project group. The aim is to ensure the discussions remain constructive and to keep the plans transparent and approved by everyone. If the discussion goes well, the gate is formally opened.

Opening a gate at the gate meeting is a symbolic action that means that the progress made is acknowledged and that the PhD student can continue her/his work. If the gate is not opened, clear indications are given about how to continue with the thesis. Formal minutes from each gate meeting are written with a focus on the four main questions (research values, examination management, business values and project control), including important decisions or unanswered questions or risks.  Figure 4 is taken from a Concept gate presentation dealing with identification of the research problem and the benefits of a project. As this is a template, the headings are the same throughout the whole process although the content the doctoral students add at each meeting changes over time.

Figure 4. An example of a template presented at a Vision gate meeting by a PhD student. The template shows the identified strengths, weaknesses, opportunities and threats within a project dealing with automated improvement analysis of a production system.
Figure 4. An example of a template presented at a Vision gate meeting by a PhD student. The template shows the identified strengths, weaknesses, opportunities and threats within a project dealing with automated improvement analysis of a production system.

 4.4 Influences on development

The management group at the industrial research school included members from the university and from industry who have previous experience of managing pure academic and industrial doctoral projects and from using process steering instruments, especially ISGDP (presented in Section 2), which is a familiar feature at Volvo. As the majority of the doctoral projects in question were initiated by Volvo and people from the management group already had industrial experience of ISGDP from several Volvo companies, the management group decided to develop a process steering instrument based on several other process steering instruments. ISGDP was the one that had affected TSM most.

Picture 1. Stakeholders at the research school kick-off listening to a presentation of TSM.
Picture 1. Stakeholders at the research school kick-off listening to a presentation of TSM.

In order to use TSM, the university management and supervisors were informed and they had to give their approval. During development, two former industrial doctoral students from the university were interviewed and their experiences were taken into consideration. It was ready to use when the Applied Informatics research school[6], complete with eight doctoral projects, commenced in January 2013. An initial overview of the development from a two-year perspective has been presented earlier (Heldal et al., 2014). In 2013 and 2014, the TSM was improved based on early comments. The changes included the introduction of the Follow-up Gate (requested by the project group) and improving the accuracy of the templates. The TSM was used initially in eight doctoral projects and it is currently (2016) being used in twelve projects[7].

For the introduction, one-hour seminars were arranged on a number of occasions for the stakeholders to explain the project methodology. It was explained again at a separate seminar held during the two-day ‘kick-off’ meeting for the research school, which took place in January 2013 (see Picture 1) and which was discussed at a workshop by different combinations of participating stakeholders in June 2013.

5. Using a process steering instrument for industrial doctoral projects

Breaking down the process into smaller parts makes it easier for the doctoral students to report their progress while still maintaining coherence between scientific and industrial needs and requirements. TSM enables them to keep values – both academic and industrial – in focus, and to ensure that both supervisors and industrial mentors have a common understanding of their problems. One of the main lessons to be learned from this study could be to acknowledge that focusing on the introduction of a doctoral project needs better communication. This is also confirmed in other studies (Wallgren and Hägglund, 2004; Wallin et al., 2014). It is not very easy to understand each other’s needs at the beginning.

1.) How can industrial doctoral projects take into account process steering instruments?

 Based on the literature for managing good university-industry projects, both industrial processes and documents regarding compliance with the academic requirements for a doctoral thesis influenced the development of TSM, as described in Section 3. Even at the construction phase a large number of associated questions needed to be addressed; questions about the content and how to use it and about roles and responsibilities associated with use. In order to accept the instrument, several meetings needed to be initiated and coordinated, and the instrument needed to be adjusted according to observations and requirements laid down by the university management and the parties involved in funding the research school.

One of the main observations is the substantial difference between the users’ background and their familiarity with process steering instruments. In three of the seven projects there was no previous experience of project management and process steering instruments, which made TSM difficult, especially at the beginning.

Positive comments were also received from the other eight research schools that were partly financed by the same national research funding institution as ApplyIT. While several schools requested the documentation necessary to run TSM, no one has to our knowledge applied the tool in their environments. In the light of the required coordination time, it could be considered beneficial to develop the instrument in parallel with development of the research school, which demands additional time on the part of developers and managers. To begin using it, the school may require resources to change the content and a number of strategic decisions may need to be made regarding how to use it in current doctoral projects.

2.) How can a process steering instrument be used at a research school?

This part is based on an initial overview of 19 meetings (SG, VG and CG) for seven doctoral projects. The following parts discuss separately the perspectives from a) the doctoral students, b) academic stakeholders and c) industrial stakeholders.

a) The doctoral students’ perspective

At almost all the SG meetings (for 6 out of 7 students) there were misunderstandings in relation to the research questions. For one student, who had supervisors from two universities and mentors from two companies, this was very obvious. Even if the aim of providing better decision-making support was stated before commencement, it became clear at the meeting that stakeholders were interested in at least three major research areas when approaching this aim and they had different opinions regarding the underlying research. Only two out of the seven project groups held at least one additional meeting with the whole project group between the beginning of the doctoral project and the SG meeting. A positive consequence of having slightly difficult templates was the increased discussion between the doctoral students regarding the meaning, for example, of research aims, business values and internal and external cooperation potential. One student, who was doing an industrial doctorate at Volvo, stated: “It was great to contact X and see her templates. Even if our projects differ a lot and even if she is working at GKN, I see we have a number of common issues regarding our research.”

While the SG meeting was considered to be more frustrating due to a lack of familiarity within the groups and with the templates, the VG meeting that was held approximately six months after commencement was considered by many projects to be positive. Idea generation with some constraints had already been discussed before the start-up and proved useful. Again, there was only one project where all the associated supervisors in the project group met between the SG and the VG meetings. According to one student: “Having all my supervisors in one place and being able to discuss with all of them the possible external environments and where important research or development projects are and what needs to be considered, proved to be extremely useful.” A student who held his SG and VG meetings together (after failing at the first SG meeting) commented: “I still think your templates are difficult, but this was really a great day for me. I feel that I have a better understanding of what I need to do in my research.”

It was hoped that all CG meetings would be held approximately one year after the start, but the meetings were only held during the second study year. Unfortunately, in most of the doctoral projects the project groups did not hold any additional meeting between VG and SG.

One of the aims of TSM, i.e. to follow the doctoral process and empower doctoral students to gain a better grasp of their projects, was considered to have been reached, but further investigation is needed to discuss how this can be made more seamless. For two of the doctoral students, assuming responsibility was a major problem and planning the first gate meeting took an unnecessarily long time. In general, some experience of project management and process steering would be beneficial to all students before starting their industrial doctoral studies, i.e. from the second information meeting dealing with TSM one year after the start. Here we can see that it is not the well-run projects that are in most need of steering. The main benefit for the student is that she/he is presented with a valid problem early on and which is of interest to both the university and industry. Another important aspect is that training in project culture would be a considerable advantage when entering the professional world. Direct contact with industry during the study period would also be enhanced.

b) The academic supervisors’ perspective

 Those academic supervisors who had previous experience of industrial collaboration, and those who had collaborative projects involving different universities, were more positive about TSM. For the last two studies the industrial perspective and business value were only dealt with on a hypothetical level. In these two cases, the management group and the academic supervisors discussed the relevance of process steering to the projects. Although before the first TSM meeting (SG) the use of TSM was called into question, the supervisors agreed to continue using it due to the fact that TSM made it easier to follow the same project from different research areas and different places.

Initially, the academic supervisors were somewhat sceptical but they became significantly more positive after a number of meetings during which TSM was explained and discussed and after realising that TSM would help them in their collaboration with the mentors from industry. There were also differences of opinion between the supervisors depending on their level of activity in the doctoral projects. The younger supervisors in particular adopted a more protective view of their students’ time and involvement in activities that were not vitally important to an accurate study.

c) The industrial mentors’ perspective

Most of the mentors found it interesting to work with TSM except those from smaller consulting companies and in the case of a doctoral project where the supporting company changes during the project. A mentor from GKN stated: “In order to follow X’s [the doctoral student’s] work we participated in the regular status meetings where the TSM model was presented as support in the process and X presented her work. Accordingly, X […] is on the right path and we now understand her thesis proposal and a recently published paper at a scientific conference. From the company’s perspective, X’s efforts have resulted in improved maintenance expertise, which is valuable to us.”

There are differences between mentors who are already used to doctoral programmes and those who are not. Discussing terminology, e.g. what is a research proposal, when and how can a paper be published and what participation at conferences means for doctoral students, is important not only for managing and funding resources but also for attracting interest from the company.

In the short term the company will have a competence influx via those persons from the company who are participating in the project and via discussions with university participants on different occasions. Regulations and legal systems mean that concept content differs from one organisation to another. An example was that different regulations stipulated that organisations were required to maintain control of information security and privacy. These issues arose on several occasions at the gate meetings.

In the long run, however, it emerged that the TSM ideas are more difficult to understand in practice than the school management group first anticipated. We have met with different reactions and been somewhat surprised by them. One industrial mentor stated: “We are not experienced in identifying the research problem that needs to be addressed, and a problem almost never gets an industrial research project up and running”. This opinion needs to be discussed further. According to the aim of TSM and the discussions during the gate meetings, the industrial mentors should be empowered to express their thoughts and to attempt to deal with problems, needs and ideas within the project group. Industrial supervisors who are not used with supervising doctoral projects are not aware on their own role. At the end of the second year, a course for teaching mentors was requires. Maybe this course is not necessarily needed for everyone. For another project, another mentor, used with supervising doctoral projects r commented at a VG meeting: “I am not interested in this […] since it is only producing a small improvement for us, an improvement that I can order and test much cheaper from […]”. While the scientific relevance of the research depends more on the supervisor from academia, securing industry approval for the study is extremely important.

The mentors realised there was a willingness to focus on industrial challenges founded in business needs and they were positive, even if they were not sure about the results and even if they found it difficult to find the time to provide input for the doctoral students or find a time slot for collaborative gate meetings.

6. Discussion

Doctoral projects that aim to create new knowledge are difficult to evaluate, especially by introducing new routines or management instruments. What can be attributed to individual abilities and what can be attributed to artificial support is always a subject for debate. The general positive attitude, despite difficult templates, allocating time for meetings and solving coordination problems, is, as one student put it, a result of getting more attention. As one of the students stated: “On the whole, ApplyIT works very well, especially with regard to the additional aids it gives us when we compare an ApplyIT doctoral student to a ‘regular’ doctoral student.” According to the same student, being the first also means embarking on a new path: “I belong to the first group of doctoral students at the research school and I came across certain things that could be improved. These have also been raised with the management and steps have been taken. TSM works well and clearer instructions (with examples from past students) for the gate material are now in place. I believe this will provide a good example for future doctoral students.”

The role of support on the road to becoming an independent researcher could also be discussed. A member of the management group, who was an experienced mentor for several industrial doctoral projects, said: “In the case of my own doctoral studies, approximately fifty years ago, my supervisor told me to go to the library and find my research problem and research questions”. While this strategy may promote a willingness to learn and make new inroads through one’s own efforts, it is difficult to follow this principle today with the limited timeframes available. Finding a smaller research area by yourself and defining research questions may contribute to learning experiences but it can scarcely be followed by many stakeholders. According to one manager and mentor from another research school: “I don’t have time for Start Gate and Vision Gate. I have to define twelve important research questions prioritised at my company, choose twelve good students, and start with the Concept Gate”. Consequently, one can discuss the role and the number of gates and how these can be defined to support and not delimit research at the very beginning of doctoral projects. Here there is a related question regarding the quality of the project and how steering and supporting that can help truly revolutionary innovations (e.g. National Academies of Sciences, 2016) and not marginalise the research contributions (Blumenthal  et al., 1996) can be possible with predefined research questions. Establishing research questions in interesting research areas and defining research contributions are clearly different from development or consulting needs. Behind these questions there may only be a subtle border, and it should therefore be discussed further. Having pre-defined gates, templates and research questions may encourage investigation of roles and aims behind industrial doctoral projects in order to sort out possible concerns about exploitation of students and ’over-industrialisation’ of higher education. (Schiermeier, 2012: p. 559)

According to this study, exploring the diversity between academia and industry can produce values if the differences are acknowledged, identified and handled from the very outset. The gain for the company is understanding state-of-the-art technologies and associated research efforts at national and international level. The meetings for discussing and steering research projects are expected to provide a good example for future projects. There can be resulting spin-off effects in terms, for example, of good master’s dissertations and other research work initiation. The dominating positive effect for industry is if they employ the successful doctoral student and bring her/him into their organisation. There she/he will make a substantial contribution in terms of time, especially by analysing problems systematically. The ‘absorptive’ effect of the research school in general can be seen in the study by Bienkowska and Wallgren, in which 19 PhD graduates were interviewed 5-10 years after being awarded their PhD (Bienkowska and Wallgren, 2012). While many companies, especially the larger ones, have an interest in supporting genuine research, they are also interested in the higher levels of competence that can be accessed via new PhD graduates (Schiermeier, 2012)

7. Conclusions

This study presented a process steering instrument, TSM constructed and used at a research school in applied informatics and provided examples for its use. The main challenge was to getting the industrial research school to prioritize time and resources to start to use TSM. Our evaluation show that meetings would not be scheduled and, as Section 3 exemplified, issues would not be discussed without TSM. One of the main lessons from this study is illustrating the needs for carefully planned introductory activities. Industry mentors are not usually trained in research procedures. Their role should be better clarified. Since the backgrounds of the stakeholders are different, it would be beneficial to know more about their view of values, handling intellectual property, patents, publications and dependence on co-funding companies already during the development supporting instruments.

This study acknowledges the result from Hermans (2011), on the importance of having active and supportive social environment around the projects and the benefits of developing the instrument alongside with developing the research school. To adjust routines and procedures for TSM according to comments and suggestions from the different stakeholders during the development phase was useful.

TSM was served as a way for the doctoral student to take the leadership for their own projects and report partial advancements to all stakeholders, as the templates were well suited to such presentations. However, only some students could master project leading and instruments for process steering at the very beginning of their graduate careers.

During this study there were a number of changes at different levels at the research school and in the surrounding research environment, including changes in the institutional structure at the local university. More than half of the doctoral projects replaced some of the academic supervisors, and a number of them replaced mentors. Even the form in which the school was co-funded by the different stakeholders changed. Handling change needs to be investigated more thoroughly for such long-term projects. Our evaluation also show that small companies need more help and therefore it would be beneficial to further investigate the need for additional support to them.


I would like to thank Lars Bråthe for much help with this paper, Robert Murby and Eva Söderström for their collaboration for building TSM, the members of ApplyIT for their fruitful comments, and Patrick O’Malley for reviewing the paper.

[1] According to the Swedish Council for Higher Education, the average time taken for doctoral projects completed in 2014 was 5.5 years (11 terms). (See: http://studera.nu/forskarstudier/utbildningen/om-utbildningen/ )

[2] IS (or ISP) stands for Individual Study Plan, a yearly plan for the doctoral student that must be signed by the doctoral student and the academic supervisors.

[3] The industrial research school in Aplyied Informatics (ApplyIT) later changed its name to IPSI.

[4] The concluding seminar is often called a pre-defence seminar.

[5] In certain contexts, the industrial mentor is called an industrial supervisor.

[6] The name of the research school changed from ApplyIT to IPSI in 2015.

[6] The name of the research school changed from ApplyIT to IPSI in 2015.

[7] After changing the management group at the industrial research school, the Follow-up Gates and the End Gate were removed. See http://www.his.se/Forskning/Forskarutbildning/IPSI/Projektstyrning/ (July 22, 2016)


Ilona Heldal, Faculty of Engineering and Business Administration, University College Bergen, Norway, ilona.heldal(at)hib.no

Ankrah S. and Omar A-T. (2015) Universities–industry collaboration: A systematic review. Scandinavian Journal of Management, 31: 387-408.

Bergeå O., Karlsson R., Hedlund-Åström A., et al. (2006) Education for sustainability as a transformative learning process: a pedagogical experiment in EcoDesign doctoral education. Journal of Cleaner Production, 14: 1431-1442.

Bienkowska D. and Wallgren L. (2012) Industrial Graduate Schools-University-Industry Interaction for Development of Absorptive Capacity. ISPIM Conference Proceedings. The International Society for Professional Innovation Management.

Blumenthal  D., Causino  N., Campbell  E., et al. (1996) Relationships between Academic Institutions and Industry in the Life Sciences — An Industry Survey. New England Journal of Medicine, 334: 368-374.

Borrell-Damian L. (2009) Collaborative doctoral education: university-industry partnerships for enhancing knowledge exchange: DOC-CAREERS project. Report, Brussels: European University Association.

Deuchar R. (2008) Facilitator, director or critical friend?: Contradiction and congruence in doctoral supervision styles. Teaching in Higher Education, 13: 489-500.

Eneroth T., Hellsten P. and Hamilton S. (2009) Get Connected. Culture in Projects at Volvo. Report Volvo IT, 200.

Ericsson ID. (2012) How we manage our business? : Ericsson, Document: Operational Quality Manual, 20.

Evans R. and Marvin S. (2006) Researching the Sustainable City: Three Modes of Interdisciplinarity. Environment and Planning A, 38: 1009-1028.

Gould J. (2016) What’s the point of the PhD thesis? Doctoral courses are slowly being modernized. Now the thesis and viva need to catch up. Nature 535: 26-28.

Grant BM. (2005) Fighting for space in supervision: Fantasies, fairytales, fictions and fallacies. International Journal of Qualitative Studies in Education, 18: 337-354.

Gustavsen B, Hofmaier B, Philips ME, et al. (1996) Concept-driven development and the organization of the process of change: an evaluation of the Swedish working life fund: John Benjamins Publishing.

Harman KM. (2004) Producing ‘industry‐ready’doctorates: Australian Cooperative Research Centre approaches to doctoral education. Studies in Continuing Education, 26: 387-404.

Heldal I., Söderström E., Bråthe L., et al. (2014) TSM: An Instrument That Supports Industrial Doctoral Projects. Proceedings of the 15th European Conference on Knowledge Management. Spain: Academic Conferences and Publishing International Limited, 428-438.

Hermans J. (2011) Knowledge transfers in university-industry R&D projects: a situated approach. PhD Thesis, FUNDP.

Hermans J. and Castiaux A. (2007) Knowledge creation through university-industry collaborative research projects. The Electronic Journal of Knowledge Management, 5: 43-54.

Ivček M. and Galinac T. (2008) Aspects of quality assurance in global software development organization. Proceedings of the 27th International Conference on Telecommunications and Information, 150-155.

Lackéus M. and Williams Middleton K. (2015) Venture Creation Programs: bridging entrepreneurship education and technology transfer. Education + Training, 57: 48-73.

Lee A. (2008) How are doctoral students supervised? Concepts of doctoral research supervision. Studies in Higher Education, 33: 267-281.

Lowe P. and Phillipson J. (2009) Barriers to Research Collaboration across Disciplines: Scientific Paradigms and Institutional Practices. Environment and Planning A, 41: 1171-1184.

Malfroy J. (2011) The impact of university–industry research on doctoral programs and practices. Studies in Higher Education, 36: 571-584.

Manathunga C. (2005) Early warning signs in postgraduate research education: A different approach to ensuring timely completions. Teaching in Higher Education 10: 219-233.

McCallin A. and Nayar S. (2012) Postgraduate research supervision: a critical review of current practice. Teaching in Higher Education, 17: 63-74.

Morris S., Pitt R. and Manathunga C. (2012) Students’ experiences of supervision in academic and industry settings: results of an Australian study. Assessment & Evaluation in Higher Education, 37: 619-636.

National Academies of Sciences, Engineering and Medicine. (2016) Continuing innovation in information technology. National Academies Press, 93.

Nature Editorial (2016) The past, present and future of the PhD thesis. Nature 535, 7610.

Newbury D. (2003) Doctoral education in design, the process of research degree study, and the trained researcher. Art, Design & Communication in Higher Education, 1: 149-159.

Norell Bergendahl M., Klintberg W. and Steinwall A. (2004) En Ny Doktorsutbildning: kraftsamling för excellens och tillväxt. Gov. Report, SOU 2004:27.

Salimi N., Bekkers R. and Frenken K. (2016) Success factors in university–industry PhD projects. Science and Public Policy, scv076.

Salminen-Karlsson M. and Wallgren L. (2008) The interaction of academic and industrial supervisors in graduate education. Higher Education, 56: 77-93.

Schiermeier Q. (2012) Education: Outside the box. Nature 482: 557-559.

Strengers YA-A. (2014) Interdisciplinarity and industry collaboration in doctoral candidature: tensions within and between discourses. Studies in Higher Education, 39: 546-559.

Thune T. (2009) Doctoral Students on the University & Industry Interface: A Review of the Literature. Higher Education, 58: 637-651.

Vesterlund A-K. (2015) Granskning av individuella studieplaner för doktorander [Eng. Reviewing the individual study plans for doctoral students]. Report UKÄ.

Wallgren L. (2007) Mellan skilda världar: En studie av doktoranders lärsituation i relation till förutsättningarna i fyra företagsforskarskolor [Between different worlds: A study of the conditions for doctoral students’ learning in four industrial research schools]. PhD Thesis, Linköping University.

Wallgren L. and Dahlgren LO. (2005) Doctoral education as social practice for knowledge development: Conditions and demands encountered by industry PhD students. Industry and Higher Education, 19: 433-443.

Wallgren L. and Hägglund S. (2004) The industry doctoral student–An educational challenge for academia and industry. Creative knowledge environments: The influences on creativity in research and innovation, 104-125.

Wallin J., Isaksson O., Larsson A., et al. (2014) Bridging the gap between university and industry: Three mechanisms for innovation efficiency. International Journal of Innovation and Technology Management, 11.

Contexts and Approaches to Multiprofessional Working in Arts and Social Care

I. Introduction

In this article, we identify the basic concepts informing multiprofessional competencies in arts and social work/care, focusing on their specific cultural contextualisation,  as framed within the currently running project MOMU (Moving towards Multiprofessional Work in Art and Social Work) funded by the Erasmus+ Programme.[1]  In short, the project aims to define competencies in teamwork and enhance educational/teacher knowledge and skills in arts and social work/care (MPW) by developing learning materials and handbooks in this area and embedding this in undergraduate HE provision. It builds on the work carried out in the project MIMO – Moving In, Moving On!  which established and embedded the initial methods for MPW into professional practice in Finland and Estonia[2]. (TUAS, 2013)

The emphasis of this kind of MPW work lies in combining the strengths of different arts and social work/care professionals to work effectively together with individuals or communities to address the identified needs. It is a multiprofessional practice stemming from a multidisciplinary approach to working with communities and individuals.

This article will thus aim to a) articulate the cultural and critical contexts of relevant concepts and b) propose overarching criteria for learning frameworks which inform future training modules in the area of MPW.

II. Scope and context

As the initial project documentation suggests, there are ‘artists who are willing to work in new kinds of environments. In the field of social work there is a growing willingness to apply art, but it is not always easy when different professional cultures confront’. (Tonteri, 2013) Artists and arts professionals might feel that they cannot get inside the community of social work professionals or might perceive that by doing so, they leave their artistic integrity behind or open themselves to risks. Social Work/Care professionals, on the other hand, often feel that collaboration may make their work more complicated, and there is often a lack of confidence in applying artistically informed approaches. More often than not, although there is real enthusiasm and willingness, they do not perceive themselves as artists, and do not feel they have the credibility or confidence to use artistic methods. Art is perceived to be associated with a deeply informed, embodied and/or studied practice and thus represents a barrier towards a wider, or deeper application of arts-based approaches in social work/care contexts.

There are plenty of case studies and projects demonstrating on the one hand the positive impacts of art-based working with youth and ethnic minorities (and other communities), and on the other the effectiveness of multiprofessional approaches in health and social care (Glasby, 2007). This project builds on these and various premises that have been widely explored in other publications and embedded into policies and professional practices but focuses on joining these two specific areas of professional practice. For sake of clarity, the basic premises that underpin this work are listed below, provided with a few key recent publications supporting their assertions:

  • Arts and culture engagement maximises social well-being and a nation’s productivity
    (Carnwath & Brown, 2014; Daykin & Joss, 2016; Sacco, 2011; The National Youth Agency UK, 2009; The Finnish Ministry of Education and Culture‘s Child and Youth Policy Programme 2012–2015; The (Finnish) Art and Culture for Well-being 2010-2014;  The Spanish National Strategy ‘Culture for all’; etc)
  • Multiprofessional working environments are a key component of modern healthcare/social care and policies dealing with children, young people and adults have already accepted/embedded the need to work with multiprofessional approaches as an effective means to achieve impact
    (Barr, 1996; Lewitt, Cross, Sheward, & Beirne, 2015; The Scottish Government, 2012a, 2012b; Zwarenstein, Goldman, & Reeves, 2009; EU Youth Report 2012; The Spanish National Strategy on Disability 2012-2020;  Government Green Paper entitled ‘Every Child Matters’; Children Act in the UK; etc)
  • Integrating both arts-based approaches and multiprofessional working methods within young people benefits growth, well-being and participation of young people (Krappe & Leino, 2013; Krappe, Parkkinen, & Tonteri, 2012; Leino, 2012; Tonteri et al., 2013; TUAS, 2013)

These underpinnings need to be inherent in any learning frameworks training young professionals in MPW in social care/work and art, allowing professionals not to lose sight of the need to be effective advocators of the connections between arts and society. The given basis that arts and culture engagement maximises social well-being and a nation’s productivity already appears in various policies, but what is often missing are more formal learning frameworks that help afford professionals to gain the skills, knowledge and competencies needed for effective MPW work to address the challenges of young people in our societies today. Additionally, learning frameworks will need to be able to address the cultural and national contexts of communities, welfare and political institutions as well as learning organisations.

This is where multiprofessional approaches can provide solutions by using the full depth of artistic engagement, while maintaining the community focused support specific to the needs and requirements of the social context. Examples of multiprofessional teamwork by arts and social work/care professionals already exist extensively, but there is a lack of learning frameworks that allow MPW teams to be supported by a structured process of negotiating roles and understanding their own responsibility in this collaborative process.

III. Linking arts-based methods and multiprofessional work

The concepts informing multiprofessional collaboration are widely used, but not often specifically defined in the context of arts and social work/care. Either they cover MPW education (or IPE – Interprofessional Education) (Davis & Smith, 2012; Lewitt et al., 2015), or they consider arts-based approaches in social work without the MPW element.

Within the context of multiprofessional work in arts and social care/work, we define MPW as a collaborative practice stemming from an inherently multidisciplinary approach to working with communities and individuals. Its strength lies in combining the knowledges and skills of arts and social work/care professionals to work effectively together to address the identified needs.

Reappearing themes from prior projects, as well as the general literature, point towards the need to consider integrating supportive measures to address these. These recurrent themes include:

a) From practical, conceptual to organisational dimensions

MPW education does not stand in isolation, and like any multidisciplinary or newly emerging practice, the various dimensions in which it exists tend to become important when advocating for its efficacy. When considering degree level training and knowledge acquisition within universities, multi- and interdisciplinary practices are always influenced by various dimensions, including:

  • the academic – multidisciplinary curricula and degree structures
  • the organisational – institutional infrastructure for multiprofessional practice
  • the social – disciplines underpinning professional practices are elementally social constructs (Boehm, 2007)

Parna referring to specifically MPW work (in Krappe & Leino, 2013) has similar divisions, from organisational, conceptual to practical. These different spheres continuously interact and need to be constantly negotiated in order to ensure that MPW can be embedded both in educational curricula, experiential learning or placement activities, as well as professional practice.

Thus as with any innovative learning practice, it will be of interest to academics and practitioners working in this field to ensure that we have the evidence to prove its efficacy in order to devise learning components that fit into existing organisational structures. Persuasive cases need to be made for the various organisational structures in order to allow effective MPW learning to happen, such as supporting multiprofessional team teaching; co-teaching of multidisciplinary students cohorts.

Outcome measurement thus becomes a necessity in order to afford the organisational dimensions to meet the needs at the theoretical and practical level. In a similar manner, how to measure the individual/pair impact of embedding MPW in professional practice interventions is a subject matter that needs to be integrated into educational provision. And as Carpenter (2005) identifies, outcomes can be at a number of different levels; about learner’s reactions, modification in attitudes and perceptions, acquisition of knowledge, changes in behaviour, changes in organizational practice and benefits to service users and carers.

b) MPW caught in the vocational vs academic debate

To understand and advocate effectively the facilitation of university-based learning environments for multiprofessional practice, it also helps to understand the question of multi-, inter-, and transdisciplinary knowledge creation in universities including their historical evolution that have widely influenced organisational structures.

Depth of knowledge has not always been prioritized over breadth, and the organisational challenges to mind the gaps between what is considered academic and what vocational; intellectual vs professional learning experiences; all these still stem from a 19th century model of intelligence. Certain subjects have come to be perceived as academic only since the 18th century and were reinforced as being ‘academic’ by the rise of the Humboldtian model of a university, which was accepted by most European and American universities. That the English and Scottish (and Irish) ancient universities have more recognisable remnants of their medieval origins may in some way also explain the wider acceptance of the ‘practice-based’ in British university contexts, as exemplified by music composition, drama, dance or creative writing. Whereas in the UK composition is taught in research-intensive universities, in Germany it is predominantly taught in conservatories and music colleges. Similarly, the Finnish HE system still displays a binary divide with universities on the one hand, and universities of applied science on the other, the latter usually not providing study to PhD level. Spanish universities are more and more adopting practice-based methods, however there are still clear differences between University degrees and ‘upper degree professional studies’ (‘formacion professional de grado superior’) which are the equivalent of Universities of Applied Sciences in Finland. Arts Schools in Spain also fall into this category[3]. Even in the UK, where the Further and Higher Education Act of 1992 placed the former polytechnics – with their more vocational and practice-based cultures – into the same framework as the old universities with their perceived predominantly academic provisions, the binary divide is still apparent and its value system perniciously remains, for example in the form of perceived research intensity.

As many of our modern European and US universities are built upon just this Humboldtian ideal of knowledge and intellect, some have argued (Boehm, 2007; Robinson, 2010) that this poses a challenge to our education systems, as well as to our means for knowledge production. The perceived difference between the ‘vocational’ and the ‘academic’ is based on this very specific intellectual model of the mind: that our perception of what academic study entails was formed at a time where the concept of intelligence was limited to the ability to reason deductively. Robinson (2010) sees this divide as being detrimentally influential in the secondary educational sector, but also suggests in his keynote speech to the RSA in 2010 that we need to scrap the perceived dichotomy between the ‘academic’ and the ‘non-academic’, the ‘theoretical’ and the ‘practical’. ‘We should see it as what it is: a Myth’.

The scale and quality of adoption by universities of innovative professional practices, such as MPW in arts and social care, is affected and influenced by these contexts, and in turn affects the creation of the skills and competencies needed for multiprofessional work, and this has been repeatedly identified in the general MPW literature reaching back at least 40 years (see Lewitt 2015). For MPW work to be widely accepted in the HE sector, these national and international Higher Education policy drivers will need to be understood to devise convincing cases for adoption.

c) Multidisciplinary knowledge and multiprofessional practice

As multiprofessional work is based on multidisciplinary learning, research and practice, as indicated above, how we facilitate interdisciplinary and multidisciplinary learning in Higher Education becomes an important framework consideration. As part of this, knowledge institutions need to understand the nuances in relation to interdisciplinary knowledge.  Thus apart from above structural dimensions, it also helps to see disciplinarity as an umbrella concept with individual terms referring to various nuances. According to Stember (Stember in Seipel, 2005) we can differentiate between knowledge formation in the following categories:

Intradisciplinary enquiries, which involve mainly one single discipline, such as a musician harmonically analysing a piece of music, or a social scientist using thematic analysis of structured interviews to consider important aspects of self-expressions of particular communities,

Cross-disciplinary enquiries tend to view one discipline from the perspective of another, such as understanding the history and social dynamic of British Pop Bands through Tajfels (1982) social identity models,

Transdisciplinary enquiries, in Stember’s words, are ‘concerned with the unity of intellectual frameworks beyond the disciplinary perspectives’. Seipel goes on to suggest that they may deal with philosophical questions about the nature of reality or the nature of knowledge systems that transcend disciplines.

Multidisciplinary enquiries draw on the knowledge domains of several disciplines, providing different perspectives on one enquiry in an additive fashion. ‘In multidisciplinary analysis, each discipline makes a contribution to the overall understanding of the issue.’ In this, a study of music performance can include insights derived from psychology as well as historical performance practice.

Interdisciplinary enquiries require ‘integration of knowledge from the disciplines being brought to bear on an issue. Disciplinary knowledge, concepts, tools, and rules of investigation are considered, contrasted, and combined in such a way that the resulting understanding is greater than simply the sum of its disciplinary parts. However, the focus on integration should not imply that the outcome of interdisciplinary analysis will always be a neat, tidy solution in which all contradictions between the alternative disciplines are resolved. Interdisciplinary study may indeed be ‘messy’. However, contradictory conclusions and accompanying tensions between disciplines may not only provide a fuller understanding, but could be seen as a healthy symptom of interdisciplinarity. Analysis which works through these tensions and contradictions between disciplinary systems of knowledge with the goal of synthesis—the creation of new knowledge—often characterises the richest interdisciplinary work.’ (Seipel in Boehm 2014)

Multiprofessional practices can thus be seen as the professional application of a knowledge domain that derives from multidisciplinary and interdisciplinary methods of enquiry. These multidisciplinary approaches will be facilitated by the educational frameworks developed by the current MOMU project. What will undoubtedly emerge is also genuine interdisciplinary knowledge and practice, where the result becomes more than merely the sum of the parts. This ‘interdisciplinary’ stage, represented by the synergy of different knowledge domains can conceptually be seen as the evolutionary development of disciplines and their associated professional practices (C. Boehm, 2007). However, it should be noted that multidisciplinary and interdisciplinary practices often exist simultaneously in a field, providing in the extreme both the opportunities of synergy of something new on the one hand, and an addition of existing deep knowledge on the other. This represents a rich environment in which new knowledge and its associated practices are formed for real-world challenges that our contemporary society is facing. MPW work thus adds a new knowledge and professional practice that will hopefully allow us to meet some of the challenges of today’s world.

d) Sharing competencies and capturing change: communication and documentation

Whether choosing a multiprofessional practice, or an interdisciplinary one, the process of formation of collectively shared competencies needs an intentional effort to communicate from one knowledge/practice domain to the other, from one expert/practitioner to the other. Structured communication channels are thus a key element in the toolset of any MPW practitioner.

Leino (2012), writing on the experiences of working in MPW teams as part of the MIMO project, emphasises the shift towards having to manage a collaborative owned knowledge: ‘The traditional concept of expertise is based on emphasizing the individual’s professional skill, which was seen to arise from the individual’s experience of working in the field in question.(…) Collective expertise means a shared kind of competence.’(Leino, 2012)

To facilitate this process of managing a shared collection of competencies, the MIMO project put forward the model below, which acted as a tool for learning, development and MPW work supervision (see Figure 1) and encompasses a concept of collective expertise through teamwork, thus facilitating the sharing of competencies between professionals from different fields (Leino 2012).

Figure 1 - MIMO’s MPW teamwork model, based on problem-based learning, in Leino's (2012)
Figure 1 – MIMO’s MPW teamwork model, based on problem-based learning, in Leino’s (2012)

Thus central to the notion of collectively shared competencies and collective expertise development is the need to have structured communication channels available that support the sharing and combining of different knowledge and values. Communication becomes a vital part, specifically as different professional cultures will not have the same terminologies and concepts or have similar terms and concepts which mean different things whilst also having differing working methods and processes.

Besides the need to maintain structured communication channels to facilitate a process of experienced change, there is also the need to document just this process. Art and social work/care is known to allow and support transformational change, be it of perspective, personal boundaries, self-knowledge and reflection, personal or community identity, empathy or empowerment. However when working in MPW it is useful to ensure that teams are aware that the focus is often predominantly on the process rather than the product. So although artistic integrity and ‘depth’ is needed and even desired, the social contexts requires an artistic experience to provide some form of transformation or change through a process of engaging artistically or creatively. ‘Rather than the artistic end product, the most important aspect of the work was the process by which the opportunities (were) awarded by art’.(Leino 2012)

It might be worthwhile noting, that this emphasis on the creative process, rather than the creative artefact (or end product), as an inherent element of an artistic practice, differs from country to country. Music, as one of the most ‘ancient’ academic subjects has had the least resistance in being accepted as an academic study to PhD level in Universities in UK. But specifically those countries that were at the forefront of artistic subjects being accepted in academic contexts, e.g. those countries in which it has been possible to study Dance, Drama, Theatre and Creative Writing to PhD level, pushed forward the idea of practice-as-research, or PaR. ‘PaR acknowledges the significance of a direct engagement from within the practical activity as an integral part. What is often called a dialogical relationship between the practice on the one hand, and the conceptual and critical frameworks on the other, is integral to PaR. In this, it does have resemblances to methodologies such as action research.’ (Boehm, 2014) With the need for an ongoing dialogue as part of a rigorous, research informed practice, in short ‘praxis’, documentation becomes an integral part of that practice. And this in turn reflects similar good practices identified in the social work/care context. Here, McLaughlin (McLaughlin, 2012) has argued that practitioners should view their practice as research in action whereby they should evaluate their interventions and where practice should inform research and research should inform practice. But the national differences in this area of artistic ‘praxis’ does have ramifications for MPW in that documentation as part of a professional practice might be common knowledge for social work/care professionals, but might not be as inherently understood by all arts professionals.  With a focus on the – by its nature – ephemeral process, it follows that documenting practice also becomes a vital part of MPW work and needs to be considered as part of the competency frameworks.

e) MPW learning improves adoption of MPW methods

Most literature about MPW in healthcare reflects the MOMU philosophy of the experiential value of learning with multiprofessional cohorts of students, and being facilitated to learn by multiprofessional teams of educators. Whether these learning experiences are labelled as interdisciplinary or interprofessional, intra-professional or interdisciplinary-interprofessional (Wiezorek, Sawyer, Serafini, Scott, Finochio in (Wiezorek, Sawyer, Serafini, Scott, Finochio in Lewitt et al., 2015), the underlying plausible assertion is that learning together will lead to an embodied understanding of how to better work together. Part of this is the premise that collaboration is itself a skill-based social process, and thus early experiences of MPW as part of skills and knowledge acquisition is vital. (Clark, 2006; Oandasan & Reeves, 2005a, 2005b)

It is noteworthy that MPW in healthcare is usually with people who are employed by the same employer, work in the same structures and share a common language. This is different from social work/social care and arts professional who are usually employed by different employers who may irregularly come together and have to develop a common language.

To support individual learners develop the team-working skills and competencies, mentoring (Lewitt et al., 2015), peer-led reviewing, peer-mentoring, experiential learning and placement shadowing (Lewitt et al., 2015) all have been identified as effective. Although no empirical study of the efficacy have been carried out, considering the very individualised and specifically contextualised needs of arts and social care/work projects, using a leadership-related-coaching approach with real experiential learning in real-life projects can be expected to become one best practice that supports teams on their own experiential journeys.

IV. Terminological quagmires, or building sandcastles with a shovel

The formation of a new knowledge domain and its professional practice arrives often with the formation of new concepts, words and associations. This terminological quagmire is made more complex when considering it across cultural and country boundaries, with their own cultural heritages and associations. Thus the words ‘multiprofessional’, ‘interprofessional’, ‘competency’, ‘applied arts’ might all seem harmless on their own, but when considered in different cultural contexts, the expert trained and practiced in one country faces the helplessness of being caught in a differently flowing maelstrom of concepts and meanings.

These interdependencies do not exist in isolation but are part of a wider political, cultural and social contexts of nations, both helping to shape and be shaped by these concepts. Language and culture thus often not only enlighten us, but make us humble in the acceptance that words are simply crude tools in our sandbox of quite sophisticated concepts, meanings and truths. Thus the communication of this knowledge, our knowledge exchange of which this article is one attempt, necessarily is like building the most intricate of sandcastles with a large shovel.

Thus it might be worthwhile to explore the complexities of certain terms in relation to different critical and cultural frameworks.

In the English language, ‘multiprofessional work’ is one term of many that is increasingly used to define a concept to describe a way of working with different professional sectors or services. Other terms often found relating to this are ‘interprofessional work’ or ‘interagency work’.

Figure 2 Number of papers using the terms interprofessional, multiprofessional, interdisciplinary or multidisciplinary in the title.( Lewitt and alii (2015), p7)
Figure 2 Number of papers using the terms interprofessional, multiprofessional, interdisciplinary or multidisciplinary in the title.( Lewitt and alii (2015), p7)

Although in MOMU we would normally consider the term to denote a model that necessitates collaborative team-work processes at every stage, in health and social care practices this is not always the case. A ‘consecutive’ working process with case handovers, joint case management, but not necessarily simultaneous collaborative multiprofessional team work, is also often considered to conform to this term, such as is described in various examples in Davis’ pedagogical handbook about multiprofessional work within child services (Davis & Smith, 2012). This might be considered to conform more to the UK-used term of ‘interagency work’, but the fluid and responsive nature of this kind of work and how it moves seamlessly from more linear case handovers to non-linear, simultaneous multi-sector involvement makes it difficult to find one term fitting all specific scenarios and contexts.

Historically, in 1997 the Centre for the Advancement of Interprofessional Education (CAIPE) put forward the definition  that  ‘interprofessional education occurs when two or more professions learn with, from and about each other to improve collaboration and the quality of care’(CAIPE, 1997).

Lewitt (2015) points out that there is a renewed interest in MPW/IPW and they put forward an exponential rise in publications using these terms in key works (See Figure 2). Interestingly they point out that  ‘publications using the terms multi–‐ or interdisciplinary tended to be practice–‐oriented, while approximately 50% of papers using the term interprofessional related to undergraduate or postgraduate education.’(Lewitt et al., 2015) The interdisciplinary underpinning stands out for Lewitt, who wrote: ‘There is lack of consensus and clarity around the use of the terms multiprofessional and multidisciplinary, both in the literature and in practice, and they are often used interchangeably.’

The discussion around the concept of ’multiprofessionality’ and ’multiprofessional work’ is highly topical in Finland where the arts sector has not had a long tradition of cross-sectoral cooperation or even ‘community arts’. This can be seen in public and media debates, in the most of extreme of these the concept of a multiprofessional practice was questioned in terms of disciplinary depth, e.g. from an artistic perspective the doubters put forward the danger of risking artistic integrity. The fear is often expressed in these debates that overwhelming demands on arts professionals would be made, being obliged to be multiply skilled persons or multi-taskers; artists who are at the same time therapists, teachers, counsellors, business managers, salespersons, project experts and so on.

The term multiprofessional seems to have gone out of fashion in the UK as Banks (2010,  p.281) notes: ‘The idea of “multi-professional working” (different professionals working alongside each other) is being replaced by “interprofessional working” (different professionals working closely together, with shared goals and perhaps with interchangeability of roles).’(Banks, 2010)

Of interest to us are the notions of ‘working closely together’, ‘shared goals’ and ‘interchangeability’ The working closely could involve two or more workers jointly sharing a case or a project and doing everything together to the situation of a key worker coordinating the contributions of other workers to achieve an agreed aim. Shared goals whereby the workers would have jointly assessed a need and agreed a plan building on the strengths of both, or more, workers identifying who would do what. Interchangeability is interesting as it suggests the final destination of interprofessional working for workforce analysts might be to question whether the two workers are always needed or whether we need a new type of professional an interprofessional worker or even a non-professional interprofessional worker.

‘Multiprofessional working’, ‘interprofessional practice’, ‘multi-disciplinary working’ or collaborative practice are often used interchangeably but all contain a notion that by working together their will be a pooling of resources, and where the ‘whole is believed to be greater than the sum of the parts’.

In the UK some social work programmes have had dual professional qualification programmes e.g. learning disability nurse and a social worker. However, even though qualified workers were qualified in both disciplines they found it difficult to obtain jobs which used both their skill sets and instead were forced into joining one profession or the other McLaughlin (McLaughlin, 2012b). This also reminds us that professions are not neutral entities and that professions like social work/social care and the arts are involved in an exercise of occupational boundaries claiming control of their own area of practice. Thus change in one profession’s claims may have knock on effects in others (Abbott, 1988).

In England there are 72 approved social work qualifying programmes in social work who enrol approximately 4,500 students per year  (Skills for Care, 2016). As part of the heavily prescriptive curriculum social work students are expected to develop skills in interprofessional practice especially as the failure of the caring professions and the police to work together has been highlighted in all UK child death inquiries since Maria Colwell (1974) to Peter Connolly (Baby P 2007). The Health and Care Professions Council ((HCPC) who currently regulate social work require qualifying and registered social workers as part of their Standards of Proficiency to be able to:

  • be able to work in partnership with others, including those working in other agencies and roles (9.6)
  • be able to contribute effectively to work undertaken as part of a multi-disciplinary team (9.7) (HCPC, 2012:11)

These standards have to be achieved by all qualifying social workers, but are generally seen in relation to working with education, health services and the police rather than with artists. This is not to say that the arts have not been used in social work, for example in the development of ‘life story books’ for children moving to alternative permanent families or the use of art, poetry, drama or music with people suffering from mental illness or dementia. It is just that artistic approaches have never been mainstreamed within social work education or practice. Hafford-Letchfied, Leaonard and Couchman (2012) in their editorial to a special edition of Social Work Education: The International Journal on the use of arts in social work note that although artistic methods are becoming more common they remain underused, connected to the lack of critical mass of evidence for their effectiveness.

The concepts around the term of MPW have thus various dimensions and contexts in which different sets of meanings and associations, and specifically for this project the professional connotations and the national contexts are relevant in order for consistent, but possibly not conform, methods of MPW education to be established.

V. Conclusion

In this first article as part of the three year EU funded MOMU project, we have explored some of the basic critical and cultural contexts in which multiprofessional work in arts and social care resides. As an inherently multidisciplinary practice, emerging from the more interdisciplinary challenges that our complex societies throw at us, it provides challenges to educational providers that derive their historical and cultural understanding from a modernity point of view of prioritising depth of disciplines. We felt that it was necessary to understand this underpinning before moving on to exploring multi- and interdisciplinary learning frameworks that will train the next generation of professionals working in this area.

Our specific learning frameworks will be the subject of a separate article, but from these explorations it becomes already clear that any learning frameworks put forward will need to cover the following aspects, whose critical and conceptual frameworks have been explored in this article:

a) Art as a basic human right (see section II);
b) Creativity and its connection to health and well-being;
c) Learning components that fit into existing organisational structures, as well as make a persuasive case for multiprofessional teaching teams and co-teaching (see section IIIa);
d) Importance of measuring outcomes of MPW work and MPW learning for demonstrating impact (see section IIIa);
e) Ability to address various national and international policy related drivers (see section IIIb);
f) Understand the academic-vocational divide as a myth, and allow experiential learning (see section IIIb);
g) Appreciation of MPW as the professional application of a knowledge domain that derives from multidisciplinary and interdisciplinary methods of enquiry (see section IIIc);
h) Skills related to communication and documentation are part of the professional practice (see section IIId);
i) MPW learning Is most effective as an MPW practice (see section IIIe);
j) Sensitivity to terminological quagmires and respect the interdisciplinary, interprofessional and intercultural interdependencies of terms and concepts (see section IV).

This is an exciting time for multiprofessional learning, and we expect that there will be many possible approaches taken across Europe to explore how best we can train future professionals. We would hope that the MOMU approach will be one of the models that will meet the challenges. Thus, we have covered in this article the specific cultural and critical contexts and propose frame criteria for learning frameworks which inform and develop future training modules in the area of MPW.

VI. Acknowledgements

We would like to thank the ERASMUS+ programme for funding this project, and everyone within the project team as well as all other individuals that have already been involved in, or contributed to the project in various ways, including interview participants, survey participants, workshop attendees or simply people we meet and talk to. The list goes on. We believe this project, which is interfaced between arts, health and wellbeing, is important, and we are thankful to be working in an area where we meet people on a daily basis that are as passionate about arts and well-being as we are. Thank you.

[1]  The idea of the project was developed in cooperation with four European Universities involved intensively in arts and social work provision: Turku University of Applied Sciences (Finland), Manchester Metropolitan University (UK), University of Tartu Viljandi Culture Academy (Estonia) and University of Castilla-La Mancha (Spain).

[2] MIMO was a research and development project running from 2010–2013 funded from the Central Baltic INTERREG IV A 2007–2013 programme, the project developed multiprofessional teamwork models and applied art-based methods for participatory youth work and embedded the approach within its own educational provision and many external youth organisations.

[3] See http://www.escueladeartelapalma.org/ and http://eacuenca.com/ (Last accessed 2016/07/23)


Carola Boehm, Manchester Metropolitan University, UK; Associate Dean; MA; C.Boehm(at)mmu.ac.uk
Liisa-Maria Lilja-Viherlampi, TUAS, Finland; Principal lecturer I Culture and Well-being; PhD; Liisa-maria.lilja-viherlampi(at)turkuamk.fi
Outi Linnossuo, TUAS, Finland; Senior teacher/Social Worker; PhD; Outi.M.Linnossuo(at)turkuamk.fi
Hugh McLaughlin, Manchester Metropolitan University, UK; Professor; H.McLaughlin(at)mmu.ac.uk
Emilio Jose Gomez Ciriano, Universidad de Castilla-La Mancha, Spain; Professor; EmilioJose.Gomez(at)uclm.es
Oscar Martinez Martin, Universidad de Castilla-La Mancha; Señor Lecturer; oscar.martinez(at)uclm.es
Esther Mercado García, Universidad de Castilla-La Mancha; Associate Professor; esther.mercado(at)uclm.es
Suvi Kivelä, TUAS, Finland; Project manager; suvi.kivela(at)turkuamk.fi
Ivar Männamaa, TÜ Viljandi Kultuuriakadeemia, Estonia; ivarman(at)ut.ee
Jodie Gibson, Manchester Metropolitan University, UK; Director Axis Arts Centre, MSc; J.Gibson(at)mmu.ac.uk

Abbott, A. D. (1988). The system of professions : an essay on the division of expert labor. Chicago: University of Chicago Press.

Banks, S. (2010). Interprofessional ethics: A developing field? Notes from the Ethics and Social Welfare Conference, Sheffield, UK May, 2010, Ethics and Social Welfare., 4(3), 280–294.

Barr, H. (1996). Interprofessional education in the United Kingdom: Some historical perspectives 1966–‐1996. Supplement to: Creating an Interprofessional Workforce: An Education and Training Framework for Health and Social Care.: Centre for the Advance of Interprofessional Practice and Education.

Boehm, C. (2007). The discipline that never was. Journal for Music, Technology and Education, Vol 1, 2007.

Boehm, C. (2014). A brittle discipline: Music Technology and Third Culture Thinking. In E. Himoinoides & A. King (Eds.), Researching Music, Education, Technology: Critical Insights. Proceedings of the Sempre MET2014 (pp. 51-55). London: University of London.

CAIPE. (1997). Centre for the Advancement of Interprofessional Education (CAIPE), Interprofessional education – a definition. London: CAIPE Bulletin 13, p.19.

Carnwath, J., & Brown, A. (2014). Understanding the Value and Impacts of Cultural Experiences: a Literature Review. Manchester.

Carpenter, J. (2005). Evaluating outcomes in social work education. Scottish Institute for Excellence in Social Work Education (SIESWE) and Social Care Institute for Excellence (SCIE). Dundee and London.

Clark, P. G. (2006). What would a theory of interprofessional education look like? Some suggestions for developing a theoretical framework for teamwork training 1. Journal of interprofessional Care, 20(6), 577-589.

Davis, J. M., & Smith, M. (2012). Working in Multi-professional Contexts: Sage Publications Ltd.

Daykin, N., & Joss, T. (2016). Arts for health and wellbeing: An evaluation framework.

Glasby, J. (2007). Understanding health and social care. Bristol: Policy.

Hafford-Letchfield, T., Leaonard, K., & Couchman, W. (2012). Arts and Extremely Dangerous’: Critical Commentary on the Arts in Social Work Education. Social Work Education: The International Journal, 31(6), 683-690.

HCPC. (2012). Standards of Proficency: Social Workers in England.   Retrieved 16/07/2016, from http://www.hcpc-uk.org/assets/documents/10003B08Standardsofproficiency-SocialworkersinEngland.pdf

Krappe, J., & Leino, I. (2013). ”A fruitful challenge” – Description of multiprofessional work in the MIMO project. In A. Tonteri, J. Krappe, I. Leino, T. Parkkinen, S. Pyörre & M. Susi (Eds.), MOVING ON! Encounters and Experiences in Arts – Working Multiprofessionally with the Youth. Turku, Finland: Turku University of Applied Science.

Krappe, J., Parkkinen, T., & Tonteri, A. e. (2012). MOVING IN! Art-Based Approaches to Work with the Youth. MIMO Project 2010-2013. (Vol. 127). Turku: Turku University of Applied Science.

Leino, I. (2012). First steps in multiprofeesional teamwork within the MIMO project. In J. Krappe, T. Parkkinen & A. e. Tonteri (Eds.), Moving In! Art-Based Approaches to Work with the Youth (Vol. 127). Turku: Turku University of Applied Science.

Lewitt, M., Cross, B., Sheward, L., & Beirne, P. (2015). Interprofessional Education to Support Collaborative Practice: An Interdisciplinary Approach. Paper presented at the International Conference of the Society for Research into Higher Education 2015.

McLaughlin, H. (2012). Understanding social work research (2nd ed. ed.). London: SAGE.

McLaughlin, H. (2012b). Keeping interprofessional practice honest: fads and critical reflections. In B. Littlechild & R. Smith (Eds.), Inter-professional and Inter-agency Practice in the Human Services: Learning to Work Together (pp. 50–61). Harlow: Pearson Education.

Oandasan, I., & Reeves, S. (2005a). Key elements for interprofessional education. Part 1: the learner, the educator and the learning context. Journal of interprofessional Care, 19(Suppl 1), 21-38.

Oandasan, I., & Reeves, S. (2005b). Key elements for interprofessional education. Part 2: factors, processes and outcomes. Journal of interprofessional Care, 19(Suppl 1), 39-48.

Robinson, K. (2010, 4/2/2010). Changing Education Paradigms. Annual Conference for the Royal Society for Arts, from http://comment.rsablogs.org.uk/2010/10/14/rsa-animate-changing-education-paradigms/

Sacco, P. L. (2011). Culture 3.0: A new perspective for the EU 2014 – 2020 structural funding programming.

Seipel, M. (2005). Interdisciplinarity: An Introduction (Lecture Notes).   Retrieved 5/12/2012, from http://mseipel.sites.truman.edu/files/2012/03/Introducing-Interdisciplinarity.pdf

Skills for Care. (2016). Social Work, Leeds: Skills for Care. Leeds.

Tajfel, H. (1982). Social identity and intergroup relations. Cambridge Cambridgeshire; New York, Paris: Cambridge University Press; Editions de la Maison des sciences de l’homme.

The Scottish Government. (2012a). Common core of skills, knowledge & understanding and values for the ”children’s workforce” in Scotland: Final common core & discussion questions.

The Scottish Government. (2012b). A guide to Getting it Right For Every Child.

Tonteri, A. (2013). Developing Multiprofessional Working Skills in Art and Social Work.

Tonteri, A., Krappe, J., Leino, I., Parkkinen, T., Pyörre, S., & Susi, M. e. (2013). MOVING ON! Encounters and Experiences in Arts – Working Multiprofessionally with the Youth: MIMO Project 2010–2013. Turku, Finland: Turku University of Applied Science.

TUAS. (2013). MIMO – Moving In, Moving On! Application of Art Based Methods to Social and Youth Work.   Retrieved 20/04/2016, 2016, from http://mimo.turkuamk.fi/

Zwarenstein, M., Goldman, J., & Reeves, S. (2009). Interprofessional collaboration: effects of practice–‐based interventions on professional practice and healthcare outcomes.

Strategies for evaluating informal science education: Identifying and measuring meaningful indicators of program effectiveness for a mobile laboratory program


The mobiLLab science education program was developed by faculty at the University of Teacher Education in St.Gallen (Pädagogische Hochschule St. Gallen (PHSG)) to spark young people’s interest in science and technology (S&T). During the last 30 years, science centers and mobile laboratories have been developed in response to a decreasing interest in S&T careers among young people (Huber, 2014), something critical to our Digital Age society and workforce (Sjøberg & Schreiner, 2010). Since its inception in 2008, the mobiLLab program has provided secondary school pupils and their teachers in Eastern Switzerland with hands-on training in science experimentation using industry and laboratory equipments. The program also serves as on-the-job training for pre-service science and math teachers at the PHSG, who participate in several school visits as pupil coaches. For the first four years of operation, mobiLLab program staff had regularly received positive verbal feedback from participating teachers and pupils and had more requests from schools than they could visit. Even so, before making changes to the program, mobiLLab leaders wanted to elicit more specific, candid feedback from program participants that could inform program development.

Starting in 2012, mobiLLab team members worked with researchers to better understand the effectiveness of their program. This paper begins with a description of the mobiLLab program and provides detail about a typical visit. The next section describes how, through an exploratory background investigation, program priorities and indicators of effectiveness were identified (Cors, 2013). We then explain how, through a mixed-methods pilot study (Cors et al., 2015), researchers examined these indicators. We further describe findings about pupil and teacher satisfaction with the program; teacher ratings of classroom preparation materials offered on the mobiLLab website; pupil educational outcomes related to S&T interest; and which factors affect these educational outcomes. A final section discusses the advantages and limitations of the methods used, and offers recommendations for future research.

Background: A Program for Inspiring Tomorrow’s Science and Industry Workers

The mobiLLab program was developed to support the PHSG strategy to promote interest in S&T topics and careers among Switzerland’s youth. School visits are designed for pupils aged 14 to 16 who attend secondary school level 1 (German: Oberstufenschule). These pupils generally either pursue further vocational training or transfer into the university preparatory secondary school level II (German: Gymnasium).

A typical visit

A mobiLLab school visit begins at the PHSG building, where the deployment team loads the experimental equipment into a van, shown in Figure 1, and drives to the school. Typically, a class visit with mobiLLab lasts a half a day. The mobiLLab usually stays at a school for one or several days, during which it holds two class visits per day.


Figure 1: The mobiLLab van
Figure 1: The mobiLLab van

MobiLLab brings with it 12 experimental posts, listed in Table 1. During classroom prepration, teachers work with pupils to choose four experimental posts at which they will work and to prepare for the visit by reviewing the corresponding E-Learning tutorial for each post. The E-Learning tutorials are 10- to 13-minute video sequences that introduce the theory, equipment and sometimes applications for each experimental post. The last part of each E-Learning tutorial is a quiz consisting of about 10 questions. Most teachers print out worksheets (Journalblätter) from the mobiLLab website for pupil use. The worksheets include blank spaces for pupils to write down their own hypotheses and questions about the experiments before the visit as well as blank spaces for them to record the results of their experimentation.

Table 1: MobiLLab offers twelve experimental posts.
Table 1: MobiLLab offers twelve experimental posts.

A day for tinkering

The mobiLLab offers pupils an opportunity to work independently and in an evaluation-free environment, something thought to promote engagement in activities and interest development (Boekaerts & Minnaert, 1999; Ryan & Deci, 2000). In contrast to most classroom experiences, where pupils regularly encounter goals, deadlines, tests and other directives, teachers and the mobiLLab team present the mobiLLab visit as a day for trying things out and working in a self-directed manner. Pupils work in pairs, as shown in Figure 2 and, in addition to following step-by-step directions at each post, are encouraged to play around and ‘tinker’ with the equipment. Pupils are asked to try to deal with unexpected results on their own before turning to a mobiLLab coach. This independent problem-solving is supported by inquiry-based responses from mobiLLab coaches, who offer comments and questions (and no direct answers) to support pupils in exploring their own explanations for their observations. Pupils are also encouraged to bring items from home to test. At the Food Analysis Post, for example, pupils test the sugar content of soft drinks and homemade jam. Sometimes pupils bring tap or pond water to analyze via ion chromatography or metal objects to analyze with x-ray fluorescence.

Figure 2.1: Pupils at mobiLLab experimental posts: Exhaust Gas Measurement
Figure 2.2: Pupils at mobiLLab experimental posts: Microwave Synthesis
Figure 2.3: Pupils at mobiLLab experimental posts: Spiro-ergometer

A desire to move forward strategically

In 2011, the mobiLLab operations team made some changes in response to teacher comments. Specifically, the mobiLLab team developed two new items for each post: the E-Learning tutorials that pupils review online before the visit and the laminated step-by-step procedural guides (Kurzanleitung) for each post. Before making other changes to the program, the mobiLLab team wanted to evaluate the effectiveness of the program and to identify factors that promote this effectiveness. What did it mean to be effective? What factors influence mobiLLab’s effectiveness?

Phase I: A Background Investigation

A first step in the evaluation was to identify exactly what it meant for the mobiLLab program to be effective. Researchers worked with mobiLLab faculty and staff to organize a background investigation to explore the program’s priorities and identify measures of effectiveness.


The background investigation took place between October 2012 and April 2013. This discovery work took place in part during mobiLLab visits through observations of and informal conversational interviews with teachers and pupils. In addition, informal interviews conducted using an interview guide, were held in person or over the telephone with mobiLLab team members and representatives from similar programs worldwide. Interview guides were developed based on guidelines from Patton (2002) to conduct informal (not taped), non-structured, open-ended discussions. Interviewees received a list of questions before the interview, in order to encourage reflection and well-thought-out responses. Both informal conversational interviews and script-guided interviews were conducted in German or English, depending upon the preference of the in¬terviewee. Activities also included reviewing mobiLLab program materials, relevant economic trend reports for Switzerland and Europe, and relevant research studies. Figure 3 shows the scope of investigation activities.

Figure 3: Background investigation activities.
Figure 3: Background investigation activities.

This exploratory inquiry provided information that the mobiLLab team used to sketch a ‘logic model,’ or map, showing the logical relationships among the resources invested in the program, the activities that take place, and the benefits or changes that result from them. The mobiLLab team developed the logic model according to a process designed for educational program planning that was developed at the University of Wisconsin-Madison (Taylor-Powell et al., 2003). The logic model expresses the mobiLLab team’s theory of change, which illustrates how the program is supposed to work. Taylor-Powell described how the logic model helps groups use evaluation resources effectively by explicitly describing how program resources and activities are meant to be linked to desired outcomes:

”A logic model is the first step in evaluation. It helps determine when and what to evaluate so that evaluation resources are used effectively and efficiently. Through evaluation, we test and verify the reality of the program theory – how we believe the program will work. A logic model helps us focus on appropriate process and outcome measures” (p. 3).

Results: Articulating their situation

A first step in creating the logic model was for the mobiLLab team to define the situation, or the environment in which the program exists, which is a complex of sociopolitical, environmental, and economic conditions. An accurate understanding of the situation is a foundational part of logic model development in that it identifies forces driving the need for strategic planning and describes the people, resources, and activities related to program challenges. The mobiLLab team formulated the following situation statement:

“In spite of good science and math scores in secondary school (Eichenberger, 2010), young people in Switzer¬land, as in many other developed countries, show low interest in these subjects (Sjøberg & Schreiner, 2010). Moreover, too few young Swiss who show talent in science and math are completing univer¬sity degrees in these disci¬plines and they are choosing non-tech professions or professions outside of industry (MINT-Meter, 2012; Vogel-Misicka, 2012). This trend comes at a time when demand for science and technology graduates is growing, making it necessary for Switzerland to import high-tech and industry workers to remain competitive (High Level Group on Increasing Human Resources for Science and Technology in Europe, 2004; PresenceSwitzerland, 2012). To address the lack of “home-grown” industry and technology workers, mobile laboratory programs have started operating in countries including Germany and Switzerland.

By bringing laboratory experiments, scientists and science coaches into secondary school class-rooms in the German-speaking part of Switzerland, mobiLLab gives pupils an opportunity to expe¬rience inquiry-based science experimentation. Studies conducted in Europe and the US show that visits with mobile laboratories and science centers sometimes result in the development of pupils’ science interest attitude and knowledge immediately after a visit and that any changes tend to fade over a matter of one or two months (Barmby et al., 2005; Brandt et al., 2008; Dowell, 2011; Gassmann, 2012; Jarvis & Pell, 2005; Pawek, 2009).

Now in its fourth year of operation, the mobiLLab team would like to evaluate the program’s effec¬tiveness to inform further development. Specifically, we want to better understand how mobiLLab affects pupils’ science and technology interest, attitudes and knowledge development, and how positive changes can be sustained” (Cors, 2013, p. 4).

Results: The core program aim is to awaken youth interest in S&T

In the logic model, or theory of change shown in Figure 4, outcomes and assumptions that the mobiLLab team believed to be most influential to program success are shown in bold. The logic model shows, for example, how classroom preparation, shown as an Action Outcome, is important for helping the pupils know what to expect, reducing anxiety and promoting curiosity about the mobiLLab visit, a Learning Outcome. This enables pupils to better engage in activities at experimental posts, which causes them to ‘become more technophillic,’ a Condition Outcome. Becoming more technophillic is an important step towards maintaining interest in S&T, which the mobiLLab team believes makes it more likely that pupils will later choose related careers, another Condition Outcome.

Through this logic modeling process, mobiLLab team members confirmed that awakening pupils’ interest in doing science with technology, or pupils becoming more technophillic, is the core goal of the program. During background investigation interviews, stakeholders including teachers, industry representatives who visited classes during mobiLLab events, and mobiLLab team members, explained that awakening pupils’ interest involves promoting multiple views of the relevance of S&T in their lives. They spoke about fostering development of pupils’ basic interest in S&T; their awareness of it in the world around them; how it is useful in society; and their comfort level with it. Similarly, studies often couple measures of science interest with measures of attitude and self-concept of ability related to S&T (Denissen et al., 2007; Dowell, 2011; Dresel & Lämmle, 2011; Potvin & Abdelkrim, 2014). Even though some elements of the logic model were somewhat roughly expressed, it provided a centerpiece for discussion among mobiLLab staff and researchers that informed identification of program effectiveness measures.

Figure 4: The logic model illustrates the mobiLLab program Theory of Change (Cors, 2013).
Figure 4: The logic model illustrates the mobiLLab program Theory of Change (Cors, 2013).

Results: Indicators of program effectiveness

Based on several logic model elements, the mobiLLab team identified a list of indicators of program effectiveness, which would be practical to measure during a research investigation. One indicator, participant satisfaction, is reflected in several logic model outcomes, such as ‘pupils feel engaged…’ and ‘teachers continue to request mobiLLab.’ A second indicator, usefulness of classroom preparation materials, comes from the logic model assumption that the level of the E-Learning tutorials is appropriate for pupil learning and from the Learning Outcome that ‘teachers learn how to prepare for the mobiLLab visit.’ A final indicator was change in pupils’ affective educational outcomes, to be measured as S&T interest, attitude and self-concept of ability. The literature review conducted in conjunction with the background investigation helped researchers identify existing instruments that could be adapted for use in the mobiLLab pilot study to measure these aspects of program effectiveness. The specific instruments that were used to measure each indicator, along with the source for each, are listed in Table 2.

Table 2: Measures of effectiveness for some mobiLLab program outputs and outcomes.
Table 2: Measures of effectiveness for some mobiLLab program outputs and outcomes.

Results: Factors thought to affect pupils S&T interest development

Drawing on results from the logic model and the literature review, the mobiLLab research-faculty team identified factors they thought had the greatest influence on pupils’ affective educational outcomes. These factors included pre-visit classroom preparation activities; pupils’ feelings of novelty, or unfamiliarity; and teachers’ attitudes about learning approaches. The process for identifying these factors is shown in Figure 5 and each factor is described below.

Figure 5: Process for identifying factors that affect pupils' development of S&T interest.
Figure 5: Process for identifying factors that affect pupils’ development of S&T interest.

Classroom preparation. Classroom preparation was seen as critical to program effectiveness. The mobiLLab team’s hypothesis, shown in the logic model, was that a more complete classroom preparation would better help pupils know what to expect at the visit and therefore support their engagement in visit activities, which would, in turn, improve their S&T interest. Similarly, several studies of informal science learning programs provide evidence for a link between a more complete classroom preparation and development of educational outcomes, which sometimes related to pupils’ exploratory behavior at the program visit (Anderson & Lucas, 1997; Cotton & Cotton, 2009; Jarvis & Pell, 2005; Kubota & Olstad, 1991; Orion & Hofstein, 1994).

Novelty. The mobiLLab theory of change emphasizes classroom preparation because it increases pupils’ familiarity with the schedule and objects they will encounter at the visit, which should lower their anxiety and heighten their curiosity about the visit. This improved familiarity should, in turn, enable pupils to better engage in at-visit activities, which should promote development of more positive interest in S&T. Evidence for such a link between increased familiarity, or reduced novelty, and the effectiveness of informal science education program has been produced by several studies. These studies indicate that pupils’ individual novelty factors, such as relevant content knowledge or familiarity with the informal learning setting, related significantly to more on-task behavior at the visit and to the development of more positive educational outcomes (Anderson & Lucas, 1997; Falk & Balling, 1982; Falk et al., 1978; Jarvis & Pell, 2005). Based on this, mobiLLab investigators identified three novelty impact factors thought to most influence how novel pupils found the mobiLLab experience: 1) a cognitive factor, measured as pupils’ grades, 2) a setting orientation factor, measured as frequency of pupils visits to informal learning venues, such as museums and science centers; and 3) a technological capability factor that reflects whether pupils’ explore and tinker, or to seek direction and support, when interacting with technology. As already mentioned, the first two factors have been examined in previous studies of informal science learning. The capabilities impact factor became part of the research design in response to interviews and conversations with mobiLLab program faculty and staff during and after the background investigation. They explained that they wanted to have a better understand how pupils feel about working with technology. The technological capability construct was chosen because it is an indicator of how capable people feel interacting with technology. It was developed as part of the Technological Profile Inventory (TPI), which supports a South African university admissions process that sought to admit engineering students with the best chance of success (Luckay & Collier-Reed, 2011).

Teacher Attitude. As an assumption in the mobiLLab logic model shows, mobiLLab team members also thought that teacher attitude influenced pupils’ interest. The great influence of teacher attitude on what pupils gain from an informal learning experience was also emphasized in interview responses from leaders of similar programs worldwide (Cors, 2013). Teacher attitude and teaching approach as a key to improving educational outcomes is not a new idea and, as early as the 1960s, the United National Educational, Scientific, and Cultural Organization recognized the “essential role of teachers in educational advancement and the importance of their contribution to the development of man and modern society” (ILO & UNESCO, 1966, p. 20). Based on a previous study of how teacher attitudes are linked to how pupils learn physics, investigators selected two factors to examine: teachers’ attitude to situational learning and to constructivist learning (Kuhn, 2010).

Phase II – Pilot Study

A mixed-methods pilot research investigation was developed to examine how classroom preparation, pupil novelty factors, and teacher attitude related to pupils’ affective educational outcomes. Affective educational outcomes, called ‘core S&T outcomes,’ were measured as interest in, attitude to, and self-concept to S&T. The investigation was designed to explore the questions, ‘How do differences in classroom preparation and in pupils’ novelty factors relate to changes pupils’ core S&T educational outcomes from before to after a mobiLLab visit?’ and ‘What moderating role do teachers’ attitudes play?’ The study also presented an opportunity to examine measures of program effectiveness.


The mobiLLab pilot study took place in Spring 2014. Data collection involved 9 teachers and 15 of their class groups who experienced a mobiLLab visit. All 9 teachers and 208 pupils completed pre- and post-visit surveys, which occurred in January and one week after their mobiLLab visit, which occurred from February to May, respectively. Teachers also participated in post-visit interviews.

Pupil survey. Pupils responded to survey items about their core S&T outcomes, their individual novelty factors, and opinions about the mobiLLab program. They rated these items using a 4-point Likert scale: “1”=completely untrue (“stimmt gar nicht”), “2” = somewhat true (“stimmt wenig”), “3” = very/quite true (“stimmt sehr”), “4” completely true (“stimmt völlig”). Examples of survey items are shown in Table 3. All of these items were borrowed from other pupil surveys and were adapted to the mobiLLab pilot surveys through a review process that involved mobiLLab program leaders, to ensure that the language would be appropriate for participating pupils. A group of eight testers, including four teens who attended school in the same provincial areas as mobiLLab pupils, completed a draft of the survey and provided feedback to improve understandability.

Table 3: Example items from the pupil survey of the mobiLLab pilot study.
Table 3: Example items from the pupil survey of the mobiLLab pilot study.

Paired t-tests were employed to assess whether pupils’ interest, attitude and self-concept regarding both science and technology changed significantly between pre- and post- visit surveys (when p<0.05). For significant changes, Cohen’s d was calculated to indicate the magnitude of the change, called effect size, which can be interpreted based on guidelines from Cohen (1998): small d=0.2, medium d=0.5, large d=0.8. Relations between impact factors, such as technological capability, and educational outcomes were explored through multivariate analysis of regression (MANOVA). Results are reported as F values, a comparison of group means for tinkers and direction seekers. For significant relations, an effect size is given as partial eta squared, Ƞp2, which can be interpreted from guidelines from Cohen (1988): small Ƞp2=0.01, medium Ƞp2=0.06, large Ƞp2=0.14.

Teacher interviews and survey. Teacher interviews took place at schools where teachers worked and lasted 30 to 40 minutes. The aims were to characterize classroom preparation and better understand teachers’ experiences with the mobiLLab program. Interviews were developed and conducted according to guidelines from Patton (2002) in a semi-structured manner. This involved following a scripted list of questions and sometimes diverging from the script when opportunities arose to talk with teachers about suggestions for program improvement. It was clear beforehand that there would not be enough time during the interviews for teachers to comment on each of the classroom preparation resources available on the mobiLLab website. In anticipation of the limited time, the interviewer (first author) asked teachers about the four resources thought to be most used by teachers: the introduction to mobiLLab PowerPoint presentation (Einführung ins mobiLLab), E-Learning, the worksheets (Journalblätter), and the step-by-step instructions for working at each post (Kurzanleitung). If other resources were discussed, these conversations were generally initiated by the teacher.

Through an online survey, teachers responded to questions about their preparation and rated four of the materials thought to be most frequently downloaded from the mobiLLab website and used for classroom preparation. These materials were the introduction to mobiLLab PowerPoint presentation (Einführung ins mobiLLab), E-Learning, the worksheets (Journalblätter), and the step-by-step instructions for working at each post (Kurzanleitung). Teachers rated these website materials based on four criteria: appropriate level and language for pupils; clarity and understandability for pupils; whether the material was edited by the teacher prior to use in class; and appeal to pupils. They rated the materials using a four-point Likert scale to indicate for example, how clear and understandable each item was: 1= not at all (stimmt gar nicht), 2 = somewhat (stimmt wenig), 3= quite (stimmt ziemlich), 4= completely (stimmt völlig).

Teacher sample and intervention

It was expected that survey responses from teachers about classroom preparation would differ between treatment teachers, who received additional preparation materials, and control teachers, who received no additional preparation materials. However, teachers’ accounts of their preparation did not vary significantly for most factors, such as which mobiLLab website materials they used during classroom preparation and their attitudes toward situated learning. In fact, classroom preparation time was the only aspect from which a preparation typology could be created. Four preparation types, shown in Figure 6, were defined based on duration and number of classroom lesson-hours (45 minutes each) devoted to preparation.

Figure 6: A classroom preparation typology was based on duration and lesson-hours.
Figure 6: A classroom preparation typology was based on duration and lesson-hours.

One explanation for the low variability of materials used by teachers for classroom preparation could be the small sample of (9) teachers. An even more likely reason was that, even though the mobiLLab manager shared new preparation materials with only five of the teachers (treatment group), other teachers (control group) sometimes gained access to these same resources. This sample ‘contamination’ is illustrated in Table 4, which shows how control group teachers used most of the new preparation materials, likely acquired from colleagues in the treatment group who worked at the same school. All new resources except for the novelty space triangle were used by at least one control group teacher. Because of the popularity of some of the new resources with teachers, such as the Planning Guide, they became a permanent part of website materials the mobiLLab program offers for classroom preparation.

Table 4: Preparation resources offered to treatment group teachers (N=5) were used by both control and treatment group teachers (N=9).
Table 4: Preparation resources offered to treatment group teachers (N=5) were used by both control and treatment group teachers (N=9).

Pupil sample

Responses from pupils (108 male; 97 female; 3 no response) about core S&T outcomes from the pre- and post-visit survey are shown in Figure 7. Pupil ratings of technology-related core S&T outcomes showed slight or insignificant changes. That is, pupils’ interest in technology was moderate and decreased significantly from pre- to post-survey, with small effect, (M=2.55->2.43, p<.001, Cohen’s d=0.18). In contrast, their attitude was somewhat positive and showed no significant change (M=3.04->3.07; p=.284), and their somewhat positive self-concept decreased significantly, with small effect, (M=2.86->2.80, p=.006, Cohen’s d=0.10). Responses about natural science were similar: pupils indicated a moderate interest in natural science that decreased significantly, with small effect, (M=2.52->2.44, p=.005, Cohen’s d=0.13); a somewhat positive attitude that showed no significant change (M=2.94->2.97; p=.384), and a somewhat positive self-concept that decreased significantly, with small effect, (M=2.87->2.82, p=.046, Cohen’s d=0.09). These results reflect the collective results from other studies of science learning at mobile laboratories and science centers, which show that pupils interest sometimes decreases and sometimes increases, and that these changes often fade over time (Barmby et al., 2005; Brandt et al., 2008; Dowell, 2011; Guderian, 2007; Jarvis & Pell, 2005; Pawek, 2009; Sasson, 2014).


Figure 7: Pupils’ S&T interest, attitude, and self-concept; mobiLLab pilot study sample (techn=technology; ns=natural science).
Figure 7: Pupils’ S&T interest, attitude, and self-concept; mobiLLab pilot study sample (techn=technology; ns=natural science).

Results: program satisfaction and classroom preparation materials

This section begins with a description of findings from an improved version of the pupil pre- and post- surveys (N=215) completed in 2015. Qualitative data from the pilot study provides further insights into participants’ program satisfaction. Also described are teachers’ ratings about the usefulness of frequently used preparation materials.

Program satisfaction
Pupils’ program satisfaction was measured through a grade they gave the mobiLLab program and through several question about how they liked the mobiLLab visit. Pupils gave their mobiLLab experience an average grade of 4.8 (SD=0.9), which is more than a full grade higher than the grade they gave the mobiLLab in 2010 (M=3.2, SD=1.5), as shown in Figure 8. MobiLLab team members attributed this improved grade from mobiLLab pupils largely to the addition of the E-Learning and step-by-step procedural guides (Kurzanleitung) for each post in 2011. MobiLLab team leaders also point to other factors that could have contributed to this increased program satisfaction: there are more teachers each year who have worked with mobiLLab in a previous year and can therefore better support pupils to prepare for the visit; new posts, such as Food Analysis, are easier to operate and can test more items from home; and recent additions of new objects, such as a prism to the Visible Light post, which appear to be popular with pupils.

Figure 8: Pupils gave mobiLLab a higher grade in 2015 than in 2010.
Figure 8: Pupils gave mobiLLab a higher grade in 2015 than in 2010.

Pupils’ responses to three questions about their satisfaction, shown in Figure 9, indicate that their mobiLLab experiences were fairly positive. On average, pupils gave a positive rating for liking the visit (M=3.1, SD=0.8). Responses about whether they would like to participate in another mobiLLab visit were slightly better than neutral (M=2.7, SD=1.0). Finally, pupils thought they had to work at least as hard during the mobiLLab visit as they usually do during science class (M=2.4, SD=0.8). These findings suggest that pupils liked their mobiLLab experience, even though it involved some work. This supports the assertion by researchers that informal learning is more than just play, offering an environment where learners work but also enjoy themselves (Rennie, 2007).

Figure 9: Pupils worked about as hard during the mobiLLab visit as they do in their regular science class, and still liked the mobiLLab day very much.
Figure 9: Pupils worked about as hard during the mobiLLab visit as they do in their regular science class, and still liked the mobiLLab day very much.

During interviews, several teachers explained that during classroom discussions after the mobiLLab visit, pupils also voiced positive feedback about the program. Teachers themselves also indicated that they were satisfied with the program, with about half of teachers expressing (unsolicited) interest in another mobiLLab visit. Teachers said mobiLLab is valuable to them because it offers pupils a chance to work with equipment and materials the schools do not have and because pupils can develop and implement their own ideas.

Results: Teacher ratings of classroom preparation materials

Teacher responses about classroom materials, shown in Figure 10, were relatively encouraging. They found the Introduction to mobiLLab to be at a good content level (M= 3.4, SD=0.7), clear and understandable (M= 3.4, SD=0.7), interesting and exciting for pupils (M= 3.2, SD=0.7), and did not need much changing before use (M= 1.6, SD=1.1). Similarly, teachers rated E-Learning online tutorials as having a good content level (M= 3.3, SD=0.9), as clear and understandable (M= 3.1, SD=1.0), interesting and exciting for pupils (M= 3.4 SD=0.7), but indicated they could use some modification (M= 2.2, SD=1.0). The post step-by-step instructions received ratings that were almost as good, with teachers indicating a good content level (M= 2.9, SD=0.9); clarity and understandability (M= 2.9, SD=0.7); that they were interesting and exciting for pupils (M= 3.0, SD=0.6); but that they could use some adjustment before use (M= 2.1, SD=1.2). The Journalblätter worksheets received more moderate reviews. Teachers indicated that they had a good content level (M= 3.1, SD=1.1); were clear and understandable (M= 2.9, SD=1.1); were somewhat interesting and exciting for pupils (M= 2.7, SD=0.5); but indicated they needed some adjustment before use (M= 2.3, SD=1.2). During interviews, teachers offered specific suggestions about modifying the Journalblätter worksheets that led to a major shortening and revision of this resource. Also in response to specific suggestions offered during interviews, the mobiLLab team managers revised several other online resources, reorganized the website, and added some information to teachers’ orientation materials.

Figure 10: Teachers' ratings of four frequently used preparation resources on a scale of 1 to 4.
Figure 10: Teachers’ ratings of four frequently used preparation resources on a scale of 1 to 4.


Results: Factors that affect pupils’ educational outcomes

Results of a multivariate analysis of regression (MANOVA) indicated that two factors affected how pupils’ core S&T outcomes changed from before to after the mobiLLab visit. These two factors were preparation time and pupils’ perception of their technologically capability.

Preparation time. Preparation time had an overall small effect on core S&T outcomes, ɳp2 =.03. A closer look through post-hoc tests suggest that pupils who experienced a preparation that started closer to the mobiLLab visit and involved more classroom time (’duration short, lesson time high’), showed significantly greater interest (science, p=.049; technology, p=.012) and had a more positive attitude (science, p=.011; technology, p=.010). These results could suggest that when preparation starts too early, pupils have difficulty recalling preparation lessons and feel unprepared for the visit. Also, more classroom time may simply give pupils more opportunity to become familiar with relevant content, equipment, and the schedule for the visit. Qualitative data provide insights into how prepration time can be used most effectively. That is, during pilot study interviews, teachers emphasized that an effective preparation 1) involves pupils reviewing the E-Learning tutorials; 2) relates mobiLLab to pupils’ interest; 3) relates classroom activities and assignments to mobiLLab; and 4) orients pupils to the plan for the day.

NOTE: Data about teacher pre-visit attitudes about the importance of situated (M=2.9, SD=.06) and constructivist (M=2.8, SD=.04) learning did not change significantly from before to after the mobiLLab visit. Also, teacher attitudes were not found to be significant moderators of the relation between impact factors and pupils’ core S&T outcomes.

Comfort with technology. Pilot study findings suggest a link between pupils’ comfort with mobiLLab equipment and engagement with mobiLLab visit activities. That is, during interviews, several teachers talked about how pupils’ engagement with mobiLLab activities depended upon them becoming comfortable with the idea of handling equipment, without for example breaking something.

Quantitative data also suggest that pupils’ comfort interacting with technology is linked to their program experience. Specifically, findings showed that more technologically capable pupils (tinkerers), reported significantly different changes in their core S&T outcomes, from before to after the mobiLLab visit, than direction seekers (medium effect: ɳp2 =.05). Follow-up ANOVA tests for individual outcomes revealed significant relations between technological capability and changes in pupils’ interest in and self-concept to technology. That is, pupils’ technological capability accounted for differences in how their interest in technology changed from before to after the mobiLLab visit with small effect, F(1,199)=5.69, (p=.018), Ƞp2=.028. As illustrated in Figure 11, tinkerers had more positive interest in technology than their direction-seeking peers. However, tinkerers’ interest in technology decreased slightly from pre- to post-visit, while direction-seekers’ interest remained unchanged. This could mean that tinkerers were bored or that somehow their expectations for the visit were not met. These results could also reflect a trend of decreased interest in science with age, a phenomenon identified in other studies of similar programs (Barmby et al., 2005; Guderian, 2007). This interpretation is based on the fact that there was a timespan of five to twenty weeks between pre- and post-visit surveys, depending upon when the mobiLLab visit for a given class took place.

Figure 11: Tinkerers’ interest in technology decreased slightly from before to after the mobiLLab visit, while direction-seekers’ interest remained steady.
Figure 11: Tinkerers’ interest in technology decreased slightly from before to after the mobiLLab visit, while direction-seekers’ interest remained steady.

ANOVA results also show that pupils’ technologically capability accounted for small but significant differences in changes in pupils’ self-concept to technology, F(1,199)=3.90, (p=.050), Ƞp2=.019. This effect is illustrated in Figure 12, which shows how tinkerers started with greater self-concept to technology than direction-seekers. However, direction-seekers’ self-concept decreased significantly more than than tinkerers’ self-concept to technology, which remained virtually unchanged. One could imagine that direction seekers felt less comfortable with the equipment at the mobiLLab visit and/or perhaps overwhelmed by the challenge of using it, which caused them to feel frustrated and therefore disengage with the activity.

Figure 12: Tinkerers’ self-concept to technology remained steady from before to after the mobiLLab visit, while direction-seekers’ self-concept decreased.
Figure 12: Tinkerers’ self-concept to technology remained steady from before to after the mobiLLab visit, while direction-seekers’ self-concept decreased.

There was no significant relationship between pupils’ technological capability and changes in their attitude to technology, F(1,199)=.147, (p=.702). Also technological capability did not account for differences in changes in pupils’ natural science educational outcomes F(3,195)=.41, (p=.746). Likewise, pupils’ science grades, math grades, and how often they visited other informal learning programs were not significantly linked to how their core S&T outcomes changed.

Summary and outlook

The mobiLLab team sought to identify and measure indicators of program effectiveness that were meaningful for their work in the field. Through an exploratory background investigation, indicators of program effectiveness were identified: participant satisfaction, usefulness of mobiLLab website materials for classroom preparation, and changes in pupils’ S&T interest, attitude and self-concept from pre- to post-visit. These indicators were examined through pupil and teacher surveys and teacher interviews during a pilot research investigation. Findings about program satisfaction produced encouraging results, indicating that pupils and teachers were satisfied overall with their mobiLLab program experience and that pupil satisfaction improved over time. Results also showed that teachers are generally pleased with classroom preparation materials provided on the mobiLLab website and offered useful input for improving these resources.

Like results from other studies about informal science education programs, our results showed that pupil’ S&T interest, attitude and self-concept changed slightly or not at all significantly from before to after the visit. Fortunately, the investigation also explored factors that influence these outcomes. Results show that classroom preparations that began less than 15 days before the mobiLLab visit and lasted longer than eight lesson hours were linked to more positive pupil S&T interest and self-concept. This offers evidence that the time invested by the mobiLLab team in developing preparation materials and by teachers in conducting classroom preparation activities is worthwhile.

A second factor that predicted how pupils’ S&T outcomes changed from before to after the mobiLLab visit was their comfort interacting with technology. That is, findings provide evidence that interest in and self-concept to technology for tinkerers, or pupils who see themselves as more technologically capable, changed differently than their direction-seeking peers. The nature of these differences was unexpected. It was perhaps no surprise that tinkerers had greater S&T interest, attitude, and self-concept than direction seekers. However, tinkerers’ interest in technology decreased slightly, while direction seekers interest remained unchanged. In contrast, tinkerers’ self-concept of ability with technology remained steady, while direction seekers developed a slightly lower self-concept of ability with technology. Qualitative data also point to how pupils’ comfort with technology affects their mobiLLab experience. That is, during pilot study interviews, teachers asserted that the more comfortable pupils feel with the mobiLLab equipment, the better they engage in activities and profit from the visit. Through the lens of novelty, this could mean that the mobiLLab needs to offer more appealing novelty, such as a more authentic laboratory environment with lab coats and clipboards, to attract pupils’ interest. Perhaps additional ‘whacky challenges’ need to be added to maintain the interest of tinkerers and keep them from being bored. In contrast, for direction-seekers, mobiLLab could try to reduce unfamiliarity by offering more opportunities for pre-visit practice with equipment and/or some simple tasks at the mobiLLab visit with which they can succeed. These activities could reduce how overwhelmed and intimidated direction-seekers feel and boost their self-concept. Future studies should examine how these approaches affect learners’ S&T interest and self-concept of ability.

The mobiLLab pilot study was designed based on the idea that classroom preparation reduces unfamiliarity and promotes at-visit engagement, which, in turn, promotes the development of S&T interest. This link between learners’ novelty factors, at-visit experience, and their educational outcomes has been put forth by several models for informal learning research, yet few studies have measured learners’ at-visit experiences. Future studies should examine how individual novelty factors, such as technological capability, relate to how learners perceive novelty during a visit, measured through indicators such as exploratory behavior, oriented feeling, cognitive load and curiosity feeling. Such studies would demonstrate, for example, whether a novelty-reducing preparation indeed improves how oriented pupils feel at a science center visit. By examining relations among learner novelty impact factors, at-visit novelty factors, and educational outcomes, studies can deepen our understanding of the role of novelty in informal learning.

The investigation process and findings offer a model that can inform other informal learning programs about evaluating their own programs. The investigation followed many of the criteria that are part of quality research to evaluate science education (Bennett et al., 2006). For example, by exploring mobiLLab program priorities and goals with team members and other program stakeholders, researchers developed measures of program effectiveness that represent the real-world challenges of an informal science education program. And by involving mobiLLab team members and local youth in developing and testing measurement instruments for the pupil survey, they felt relatively confident that they collected responses from pupils that match what they aimed to measure. Collecting teacher responses through both interviews and an on-line survey is a form of data triangulation that contributed to the validity of some variables. Moreover, data was collected both before and after the mobiLLab visit and the pilot study involved a moderately large pupil sample.

Investigators also learned about the challenges of studying informal learning programs, including some factors that commonly limit such studies, which must often organize research activities to conform with classroom pupil groupings and course schedules (Bell et al., 2009; Brownell et al., 2013). For example, the pilot study did not include a control or comparison group, so conclusions cannot be made about whether educational outcomes from a mobiLLab visit are different from outcomes that result from classroom learning. Also, pupil and teacher samples were not chosen randomly, but consisted of those classes whose teachers made the extra effort to request a mobiLLab visit. It is also worth noting that the one-time, transient nature of informal learning programs like mobiLLab introduces questions about whether findings are the result of the program experience or of other factors in learners’ lives. That is, during the pre- and post-visit surveys, pupils could have encountered other classroom lessons or out-of-school experiences that influenced their science interest, attitude and self-concept.

A final note is about the high-technology nature of some informal learning programs, which reflects how technology has become more prevalent in our lives. The mobiLLab evaluation reveals that pupils’ interest in and self-concept to technology are different from how they view science, depending upon their perception of how technologically capable they are. By recognizing these links, studies about mobile laboratories and science centers can help us better understand how we are preparing young people for life in the 21st century, much of which is high-tech. How technologically capable pupils see themselves as has been recognized as an important skill for thriving and contributing to Digital Age societies. The National Academy of Engineering (NAE) and US National Research Council (NRC) described technological capability as one of three dimensions of technological literacy, which consists of dimensions of capabilities, knowledge, and critical thinking. They explain how technological literacy has become a critical aspect of how people function in and support today’s economy and society (Garmire & Pearson, 2006):

“There are a number {of benefits of technological literacy} … some of the most important relate to improving how people—from consumers to policy makers— think and make decisions about technology; increasing citizen participation in discussion of technological developments; supporting a modern workforce, which requires workers with significant technological savvy; and ensuring equal opportunity in such areas as education and employment for people with differing social, cultural, educational, and work backgrounds” (p. 22).


Rebecca Cors*, University of Teacher Education, Institute for Teaching Natural Science, Switzerland, rebecca.cors(at)phsg.ch
Nicolas Robin, University of Teacher Education, Institute for Teaching Natural Science, Switzerland, nicolas.robin(at)phsg.ch

*corresponding author

Anderson, D., & Lucas, K. (1997). The Effectiveness of Orienting Students to the Physical Features of a Science Museum Prior to Visitation. Research in Science Education, 27(4), 485-495.

Barmby, P., Kind, P. M., Jones, K., & Bush, N. (2005). Evaluation of Lab in a Lorry (Vol. Final Report): CEM Center and School of Education, Durham University.

Bell, P., Lewenstein, B., Shouse, A. W., & Feder, M. A. (2009). Learning Science in Informal Environments: People, Places, and Pursuits. PDF is available at: http://www.nap.edu/catalog/12190.html: National Academies Press.

Bennett, J., Lubben, F., & Hogarth, S. (2006). Bringing Science to Life: A Synthesis of the Research Evidence on the Effects of Context-Based and STS Approaches to Science Teaching. Wiley Interscience. Retrieved from doi:10.1002/sce.20186

Boekaerts, M., & Minnaert, A. (1999). Self-regulation with respect to informal learning. International Journal of Educational Research, 31, 533-544.

Branch, R., Kim, D., & Koenecke, L. (1999). Evaluating Online Educational Materials For Use In Instruction. Retrieved from http://www.kidsource.com/index.html

Brandt, A., Möller, J., & Kohse-Höinghaus, K. (2008). Was bewirken außerschulische Experimentierlabors? Ein Kontrollgruppenexperiment mit Follow up- Erhebung zu Effekten auf Selbstkonzept und Interesse (What’s the Effect of Science Laboratories? A Control Group Experiment with Follow-up Data on Self-Concept and Interest). Zeitschrift für Pädagogische Psychologie, 22(1), 5-12.

Brownell, S. E., Kloser, M. J., Fukami, T., & Shavelson, S. (2013). Context Matters: Volunteer Bias, Small Sample Size, and the Value of Comparison Groups in the Assessment of Research-Based Undergraduate Introductory Biology Lab Courses. Journal of Microbiology Biology Education, 14(2), 176–182.

Cohen, J. W. (Ed.). (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum Associates.

Cors, R. (2013). MobiLLab Program Background Investigation: Directions for Program Improvement and Evaluation Research (Verschaffen eines Überblicks des mobiLLabs) (http://phsg.contentdm.oclc.org/cdm/ref/collection/p15782coll3/id/94, Trans.) (pp. 32). St. Gallen, Switzerland: University of Teacher Education (Pädagogische Hochschule St. Gallen).

Cors, R., Müller, A., & Robin, N. (2015). Advancing Informal MINT Learning: Preparation and Novelty at a Mobile Laboratory. New Perspectives in Science Education, 53-58.

Cotton, D. R. E., & Cotton, P. (2009). Field biology experiences of undergraduate students: the impact of novelty space. Journal of Biology Education, 43(4), 169-174.

Denissen, J., Zarrett, N., & Eccles, J. (2007). I Like to Do It, I’m Able, and I Know I Am: Longitudinal Couplings Between Domain-Specific Achievement, Self-Concept, and Interest Child Development, 78(2), 430-447.
Dowell, K. (2011). 2010-2011 Evaluation of the MdBioLab Program. In EvalSolutions (Ed.), (pp. 33): Prepared for: MdBio Foundation, Rockville, Maryland.

Dresel, M., & Lämmle, L. (2011). Motivation. In T. Goetz (Ed.), Emotion, Motivation, und selbsreguliertes Lernen. Schöning/UTB: Paderborn.
Eichenberger, I. (2010, December 8). Swiss students get an encouraging report, Swissinfo.

Engel, K. (2004). Schülerlabors: authentische, aktivierende Lernumgebungen als Möglichkeit, Interesse an Naturwissenschaften und Technik zu wecken. (Disseration), Christian-Albrechts-Universität, Kiel, Germany.

Falk, J. H., & Balling, J. D. (1982). The Field Trip Milieu: Learning and Behavior as a Function of Contextual Events. Journal of Educational Research, 76(1), 22-28.

Falk, J. H., Martin, W. M., & Balling, J. D. (1978). The Novel Field-Trip Phenomenon: Adjustment to Novel Settings Interferes with Task Learning. Journal of Research in Science Teaching, 15(2), 127-134.

Garmire, E. M., & Pearson, G. (2006). Tech tally: Approaches to assessing technological literacy. Washington, DC: National Academies Press.
Gassmann, F. (2012). Das Schülerlabor iLab des Paul Scherrer Instituts (pp. 2). Switzerland: Paul Scherrer Institute.

Guderian, P. (2007). Wirksamkeitsanalyse außerschulischer Lernorte – der Einfluss mehrmaliger Besuche eines Schülerlabors auf die Entwicklung des Interesses an Physik. (Disseration), Mathematisch-Naturwissenschaftliche Fakultät I. Retrieved from http://edoc.hu-berlin.de/docviews/abstract.php?id=27927
High Level Group on Increasing Human Resources for Science and Technology in Europe. (2004). Europe Needs More Scientists. Retrieved on 9. January 2013 from http://ec.europa.eu/research/ conferences/2004/sciprof/pdf/final_en.pdf: European Commission.

Huber, B. (2014). Swiss Barometer of Young Talent in STEM subjects (MINT-Nachwuchsbarometer Schweiz): Swiss Academy of Engineering Sciences.
ILO, & UNESCO. (1966). Recommendation Concerning the Status of Teachers. Retrieved from http://www.ilo.org/public/english/dialogue/sector/techmeet/ceart/rec66i.htm

Jarvis, T., & Pell, A. (2005). Factors Influencing Elementary School Children’s Attitudes toward Science before, during, and after a Visit to the UK National Space Centre. Journal of Research in Science Teaching, 42(1), 53-83.

Kubota, C. A., & Olstad, R. G. (1991). Effects of Novelty-Reducing Preparation on Exploratory Behavior and Cognitive Learning in a Science Museum Setting. Journal of Research in Science Teaching, 28(3), 225–234.

Kuhn, J. (2010). Authentische Aufgaben im theoretischen Rahmen von Instruktions- und Lehr-Lern-Forschung: Effektivität und Optimierung von Ankermedien für eine neue Aufgabenkultur im Physikunterricht (Habilitationsschrift ed.). Wiesbaden: Vieweg &Teubner.

Luckay, M., & Collier-Reed, B. (2011, 10-12 August). Admitting Engineering Students with the Best Chance of Success- Technological Literacy and the Technological Profile Inventory (TPI). Paper presented at the 1st Biennial Conference of the South African Society for Engineering, Sellenbosch.

MINT-Meter. (2012, May 23). Neuer Höchststand der MINT-Fachkräftelücke.

OECD. (2006). Test PISA 2006 Schweiz und Liechtenstein; Deutsch: OECD Programme for International Student Assessment:.
Orion, N., & Hofstein, A. (1994). Factors that Influence Learning during a Scientific Field Trip in a Natural Environment. Journal of Research in Science Teaching, 31(10), 1097-1119.

Patton, M. Q. (2002). Qualitative Research and Evaluation Methods (3rd Edition ed.). Thousand Oaks, California: Sage Publications.

Pawek, C. (2009). Schülerlabore als interessefördernde ausserschulische Lernumgebuhngen für Schülerinnen und Schüler aus der Mittel- und Oberstufe. (Dissertation), Christian-Albrechts-Universität, Kiel, Germany.

Potvin, P., & Abdelkrim, H. (2014). Interest, Motivation and Attitude Towards Science and Technology at K-12 Levels: a Systematic Review of 12 Years of Educational Research. Studies in Science Education, 50(1), 85–129.

PresenceSwitzerland. (2012). Foreign workers. swissworld.org: Federal Department of Foreign Affairs, Switzerland.

Rennie, L. J. (1994). Measuring Affective Outcomes from a Visit to a Science Education Centre. Research in Science Education, 24, 261-269.

Rennie, L. J. (2007). Learning Science Outside of School. In S. K. Abell, N.G. Lederman (Ed.), Handbook of Research on Science Education (pp. 125-167). Mahwah, New Jersey: Lawrence Erlbaum Associates.

Ryan, R., & Deci, E. (2000). Self-Determination Theory and the Facilitation of Intrinsic Motivation, Social Development, and Well-Being. American Psychologist, 55(1), 68-78.

Sasson, I. (2014). The Role of Informal Science Centers in Science Education: Attitudes, Skills, and Self-efficacy. Journal of Technology and Science Education, 4(3).

Sjøberg, S., & Schreiner, C. (2010). The ROSE project: An overview and key findings (pp. 31): University of Oslo.
Taylor-Powell, E., Jones, L., & Henert, E. (2003). Enhancing Program Performance with Logic Models. Retrieved January 7, 2013, from the University of Wisconsin-Extension web site: http://www.uwex.edu/ces/lmcourse/.

Vogel-Misicka, S. (2012, October 7). Switzerland faces a lack of IT professionals. swissinfo.ch.

Willig, C. (2013). Introducing Qualitative Research in Psychology (Third Edition ed.). Berkshire, England: Open Universtiy Press.

Developing new models for earning study credits from daily work – challenges in developing competence in nursing education

Clinical learning of nursing students in Finland

In Finland, students study to become registered nurses for 3.5 years (210 ECTS) in universities of applied sciences. At the EU level, clinical practice covers at least 50% of the total degree. During their education and particularly in clinical practice situations, it must be ensured that nursing students are able to prepare their skills in evidence-based nursing (Ministry of Social Affairs and Health, 2012). There is a need for special learning situation arrangements in the context of health care and social services. Typically, nursing students carry out clinical practice as unpaid workers, acting as ‘extra’ persons in the workplaces, not included in staff resources. This is supposed to allow students a chance to have better circumstances for the placement and give them time for learning. One of the reasons that, for example, nursing students may not get opportunities to practice their competencies in their work as paid employees in the fact that, in Finland, nursing students are allowed to work as a fill-in for a registered nurse only once they have completed at least 140 ECTS of their nursing studies. The law contains many restrictions concerning health care and social service workers who have not yet graduated regarding what they are allowed to do in their work.


For instance, if the nursing student is allowed to perform some task during his or her clinical practice before reaching certain level of studies, they must be accompanied by an employee qualified for the task, who in turn shall take the responsibility of guiding the student to conduct the task in an appropriate and safe way. Registered nurses, referred to as the students’ mentors, guide and assess nursing students in the clinical practice situations; however, in Finland, university-educated teachers are also responsible for guiding and assessing the students during their clinical placements (Ministry of Education, 2006).

Competence Areas

Nursing students must be trained to meet medical standards and have competence in nursing diagnoses and interventions (Eriksson et al., 2015). However, according to Kajander-Unkuri et al. (2013), specific competence areas in nursing are yet to be defined in the European Union. For example, Gardner, Hase, Gardner, Dunn & Carryer (2007) have argued that there are limitations to the use of a competency-based assessment: Nurses may have knowledge accumulated through education and experience, but they may nevertheless be unprepared to use it in their clinical practice actions. The nursing students’ capability describes their ability to use their competencies in novel as well as familiar circumstances. Rochester, Kilstoff & Scott (2005) found that while capability in technical skill is required in successful practice as a nurse, the capabilities of social and personal ‘emotional intelligence’ are also significant. The highest-ranked item in Rochester et al.’s (2005) important study was the interpersonal aspect of emotional intelligence, which was defined as ‘ability to empathize and work productively with people from a wide range of backgrounds’. Mentors in clinical placements spend a lot of time with students, which puts emphasis to their ability to assess how the students manage combining theoretical knowledge with the real word of nursing.

Verkkovirta project and nursing students’ learning by working

The goal of the Verkkovirta project, financed by the European Social Fund, is to develop new models that allow students to earn study credits from daily work. Haaga-Helia School of Vocational Teacher Education coordinates the project, while the subprojects are implemented in Saimaa and eleven other universities of applied sciences. (Verkkovirta 2016.)

Competencies required by a degree in nursing can be obtained both in the classroom and in the workplace. Therefore, new innovative methods are needed. In different fields of education, there is a need for different and novel arrangements of education. Indeed, this project has excellent potential to develop good practices that combine work and study. When nursing students obtain study credits for their daily work as employees, it must be ensured that successful practice is underpinned by the graduates’ ability to integrate and consistently apply a number of capabilities beyond profession-specific skills and knowledge. For example, Bisholt et al. (2014) and Stayt & Merriman (2013) have argued that nursing students may not get consistent opportunities and experiences of clinical skill development in their clinical placements, which may have consequences on nursing students´ learning and competency development. This might cause difficulties in placing students effectively in clinical contexts to ensure maximal learning opportunities (Walker et al., 2011). Through the placements, nursing students get to work in very different kinds of hospitals, nursing homes, home care etc. It is challenging to analyze what kind of possibilities they have during these placements to achieve certain kinds of competency and what is the level of these competencies.

Managers’ perspectives of the possibility of earning money and completing a degree at the same time

One of the roles of Saimaa University of Applied Sciences in the Verkkovirta project was to investigate working organizations’ perspectives of development needs in situations where students are able to receive payment for their work while at the same time have possibilities to build their competency for degree purposes.

Data collection and data analysis

Ten managers in different kinds of health care and social services (public, private and third sector) were contacted by visiting them personally at their workplaces. The purpose of the visits was to find out about the managers’ opinions of this aim. Interviews were held as dialogical discussion sessions, and the author was taking notes at the same time. After each interview, the notes were supplemented by the author to make them more accurate. The written data were analyzed by content analysis and themes were formed by combining the managers’ conceptions of the development needs related to this new way of earning money and studying at the same time in clinical situations.

Permanent worker as a nursing student

It has been common in nursing and social service organizations that when a worker holds a permanent position, he or she might get opportunities to combine some of their studies in higher education with their current job, getting to complete some study assignments, such as clinical practice periods or theoretical tasks at their workplace. For example, if the student has been working in a hospital or home care as a practical nurse, they can complete parts of their registered nurse education at the same workplace. The interviewed managers reported that they support workers who want to advance their studies in health care or social services. In some cases, workplaces may even have offered to change the student’s job description to provide them with more opportunities to use the working periods for educational purposes during the education. The support of colleagues plays an important role, as such arrangements may also effect the entire workplace. Managers highlighted that the main responsibility of employees is to perform their normal tasks at the workplace, and situations supporting the education may be arranged if the main work situation allows this without any major problems. The main focus must be on clients and patients, not just educational purposes.

The managers suggested that it is easier to manage simultaneous work and degree-earning when the worker conducting studies is has a permanent job contract. Nevertheless, managers also planned and provided options for temporary workers to combine their work and studies, for example, in some cases, work tasks could be arranged just for a given student. For example, a nursing student may have a summer job in home care of which, each week two or three days could be arranged to include certain type of work for the mere purpose of helping the student reach the level of competence required by their degree. Managers described that this might influence the students’ motivation as workers in the organization not only during the work practice period, but also later. Most of such arrangements could be facilitated by a multi-professional workplace where there are employees working in the profession pursued by the student. In fact, the managers highlighted the possibilities for students to collaborate with professionals during their work practice periods and the fact that it is not always possible if they are paid workers and not the ‘extra people’ as students with no financial impact to the organizations as usually.

Multi-professional mentoring

Especially in small working places, the managers also brought up the question of the mentor having the ‘same profession as the student. Educational institutes typically require for the workplaces where health care and social services students practice their skills of competency to provide the student with a mentor in the same profession as the one which the student is working towards. Mentoring could also be arranged at times by providing multi-professional mentors; however the mentor who bears the responsibility of the student’s final assessment at the end of the clinical practice period should be in the profession as the one for which the student is studying. Managers shared the opinion that it should also be possible that, for example, a registered nurse should be allowed to assess a physiotherapist student’s ability to work in certain circumstances. The question of the managers was that ‘what is the problem of the multi-professional assessment’.

Mentoring resources

In order to successfully combine work and achieving competency for educational purposes, the importance of proper guidance and mentoring was highlighted. The managers argued that it is important for mentors to have more knowledge, for example, of the nursing education curriculum and skill requirements set for nursing students. There was also an apparent need for mentors to enhance their skills in assessing nursing students’ competence in clinical situations. Therefore, there is a need for instructions from educational institutes to the work placement sites. The main question seems to concern timing problems: mentors have a lot of responsibilities in their work settings and there are few resources for substitute employees. Therefore, it may not be easy to set time aside from patient care in order to study nursing student’s learning and assessment needs. In addition, if the registered nurses do get the opportunity to participate in training, they prefer to enhance their patient care knowledge, especially in case of nursing in specific fields (e.g. surgical or mental health nursing). Nursing guidelines and techniques are constantly in progress, and nurses are required to stay updated on these important issues, which also explains the order of importance for using nursing resources for education purposes.

Mentoring education arrangements

When asked about good practices for mentoring training, managers suggested events that would take only three to four hours in the evening and offering the same contents twice on different days would enable as many as possible to participate in the education and using necessary shift arrangements to take care of clients and patients. Managers argued that it would be easiest to arrange mentoring training at the work organization so that the workers would not have to travel a long way in order to attend, and it would also be ideal if the events were held at the working places of the mentors.

Support from teachers

It has not always been possible to ensure that mentors have completed mentor training, which makes the support of the students’ teachers even more important. The managers highlighted that teachers should visit the clinical placements in the beginning of the working period so that the mentors and students get orientation to the clinical practice period and the assessment process, including determining what the student should learn and what competency levels should be reached for educational purposes during the working period. Teachers should also clarify the responsibilities of each party: what should managers/organizations do, what is the student responsible for, what are teachers/educational institutes’ responsibilities? Managers also highlighted the role of the students: they may have broad responsibility of the whole process and must be particularly proactive in arranging and ensuring that they get possibilities for learning and earn the level of competency set for their degree. According to the managers’ views, the students who are willing to be active in process are more likely to take care of their own learning and related situations. This may help them graduate earlier than other students or possibly enhance their financial circumstances during their education.

Independent working situations

The issue of mentoring in independent working situations was also highlighted by the managers. Health care and social services involve certain situations that require employees to work by themselves, without any help from colleagues at the worksite. Home care and work conducted alone with the customer/patient in an examination room are typically one-worker jobs.  Working alone is usually an outcome of limitations to financial and timing resources. What consequences could there be for student nurses needing to have someone to accompany them so that they could assess their behavior in real customer/patient situations? Would the rest of the employees have to work more because one of the workers cannot work independently all the time? This could also affect the willingness for the aforementioned arrangements at the whole work place and among workers.

The managers had a very positive view on improving students’ ability to earn study credits from their daily work. They had often witnessed students having to work during their studies to earn money to in order to support their family, small children or meet their financial needs. This might cause a delay in the students’ education, but the employers would like to employ this specific student after graduating and this is not possible because of the situation. The managers consider that combining work and studying gives ‘good drive’ to the whole workplace because the students may be highly motivated to improve the circumstances of working processes. In many cases, the students take on theoretical tasks, such as a final thesis, for certain work place needs.


Students’ ability to work in the ‘real world’ is very important for their professional growth by combining their theoretical knowledge with actions in a workplace. These learning situations are important, but it is also crucial that students increase their knowledge of their competency as nurses or other professionals. Final assessment in clinical practice during nursing education is extremely import for ensuring the sufficiently high quality of nursing graduates. In every profession, awareness of what employees know and do not know, and their ability to identify what they need to know is key to lifelong learning and becoming a better professional (Gardner et al., 2007). For example, Blackman et al. (2007) and Lauder et al. (2008) have argued that nursing students’ self-assessment skills may be insufficient and that self-assessment might thus not be a reliable method for ensuring the competence of nursing students. The challenges in combining work with earning credits to a degree also highlight this challenge of assessment. What are the circumstances in which students are working; what are the utilized competency areas, are the students able to do practice everything required by their studies, how is mentoring arranged, and how do students get relevant feedback and assessment?

Mentors are clinical nurses who supervise and assess nursing students during their clinical practice. Therefore, mentors play an important role in identifying nursing students’ capability (Jokelainen et al., 2011). If working organizations had possibilities to ensure that students get proper learning opportunities with the help of good mentoring and appropriate assessment practices, we could ensure meeting the objectives set for nursing students also in a situation when a student is paid for work during the period they learn nursing skills. In many other education sectors, it is not uncommon that students receive payment for their work also when the aim of their work period is to meet objectives set for their studies.. For example, in technological education in Finland, students are encouraged to get a summer job to earn credits for their studies. In contrast, in education in the field of health care and social services, students are typically considered to be unable to learn enough if they are working as paid workers. But again: high quality assessment is the way to ensure high quality of learning.

Educational institutes must carry out good teamwork with clinical practice placement sites and mentors to ensure high quality in the assessment process, especially when nursing students are also employees at the sites. This is a challenging set of circumstances because it differs from typical arrangements for nursing students’ clinical practice periods where students are perceived as ‘extra’ persons in the working places. The role of nursing teachers in the clinical placements has been sometimes debated, while findings by Helminen et al. (2014) and Löfmark et al. (2012) showed that nursing students and mentors rated highly the supervision they had from teachers. The opinions of the managers who participated in this inquiry belonging to the Verkkovirta project were similar. Mentors need support from teachers to improve the clarity of assessment plans and documentation: what nursing students are required to complete and explanations regarding the meaning of the ‘pass’ and ‘fail’ grades. Mentors and nursing teachers have their own roles in the clinical placements: mentors are the experts on clinical practice, while teachers´ role includes familiarity with learning outcomes defined for clinical practice and how these can be reached and assessed (Collington et al., 2012; Broadbent et al., 2014; Helminen et al., 2016). Therefore, nursing teachers’ visits to clinical placement sites for ensuring that nursing students get an opportunity to receive feedback on their performance from mentors are important for the good quality of the assessment process. Work organizations play a central role in enabling this special opportunity for students to arrange their studies in personal ways and, therefore, educational institutes and teachers should also invest in and carefully consider employers’ opinions and make this cooperation as good as possible.

The purpose was to investigate perspectives in work organizations on development needs related to students combining work and studies. By interviewing managers, we gained important knowledge that can be used in developing educational situations to provide students with opportunities to study flexibly and graduate within the appropriate timeframe. The importance of support and arrangements for the entire workplace and employees is highlighted. Finally, educational institutes must also guarantee that the teachers provide support to the students, mentors and managers during the process.


Kristiina Helminen, Saimaa University of Applied Sciences, Senior Lecturer, MHSc, kristiina.helminen(at)saimia.fi

Bisholt, B., Ohlsson, U., Kullén Engström, A. & Sundler Johansson, A. 2014. Nursing students´ assessment of the learning environment in different clinical settings. Nurse Education in Practice 14, 304-310.

Blackman, I., Hall, M. & Ngurah, I.G. 2007. Undergraduate nurse variables that predict academic achievement and clinical competence in nursing. International Education Journal 8, 222-236.

Broadbent, M., Moxham, L., Sander, T., Walker, S. & Dwyer, T. 2014. Supporting bachelor of nursing students within the clinical environment: Perspectives of preceptors. Nurse Education in Practice 14, 403-409.

Collington, V., Mallik, M., Doris, F. & Fraser, D. 2012. Supporting the midwifery practice-based curriculum: The role of the link lecturer. Nurse Education Today 32, 924-929.

Eriksson, E., Korhonen, T., Merasto, M. & Moisio, E-L. 2015. Sairaanhoitajan ammatillinen osaaminen – Sairaanhoitajakoulutuksen tulevaisuus -hanke. Ammattikorkeakoulujen terveysalan verkosto ja Suomen sairaanhoitajaliitto ry. Bookwell Oy, Porvoo. Also available at (includes English version): https://sairaanhoitajat.fi/wp-content/uploads/2015/09/Sairaanhoitajan-ammatillinen-osaaminen.pdf

Gardner, A., Hase, S., Gardner, G., Dunn, SV. & Carryer, J. 2007. From competence to capability: a study of nurse practitioners in clinical practice. Journal of Clinical Nursing 17, 250-258.

Helminen, K., Tossavainen, K. & Turunen, H. 2014. Assessing clinical practice of student nurses: Views of teachers, mentors and students. Nurse Education Today 34, 1161-1166.

Helminen, K., Coco, K., Johnson, M., Turunen, H. & Tossavainen, K. 2016. Summative assessment of clinical practice of student nurses: A review of the literature. International Journal of Nursing Studies 53, 308-319.

Jokelainen, M., Turunen, H., Tossavainen, K., Jamokeeah, D. & Coco, K. 2011. A systematic review of mentoring nursing students in clinical placements. Journal of Clinical Nursing 20, 2854-2867.

Kajander-Unkuri, S., Salminen, L., Saarikoski, M., Suhonen, R. & Leino-Kilpi, H. 2013. Competence areas of nursing students in Europe. Nurse Education Today 33, 625-632.

Lauder, W., Holland, K., Roxburgh, M., Topping, K., Watson, R., Johnson, M., Porter, M. & Behr, A. 2008. Measuring competence, self-reported competence and self-efficacy in pre-registration students. Nursing Standard 22, 35-43.

Löfmark, A., Thorkildsen, K., Råholm, M-B. & Natvig, G.K. 2012. Nursing students´ satisfaction with supervision from preceptors and teachers during clinical practice. Nurse Education in Practice 12, 164-169.
Ministry of Education 2006. Ammattikorkeakoulusta terveydenhuoltoon. Koulutuksesta valmistuvien ammatillinen osaaminen, keskeiset opinnot ja vähimmäispistemäärät. Opetusministeriön työryhmämuistioita ja selvityksiä 2006:24. Available at: http://www.minedu.fi/export/sites/default/OPM/Julkaisut/2006/liitteet/tr24.pdf  Accessed 5 June 2016. (In Finnish)

Ministry of Social Affairs and Health 2012. Koulutuksella osaamista asiakaskeskeisiin ja moniammatillisiin palveluihin, Ehdotukset hoitotyön toimintaohjelman pohjalta. Publications of the Ministry of Social Affairs and Health 2012: 7, 1-29. (In Finnish)

Rochester, S., Kilstoff, K., Scott, G. 2005. Learning from success: Improving undergraduate education through understanding the capabilities of successful nurse graduates. Nurse Education Today 25, 181-188.

Stayt, L.C. & Merriman, C. 2013. A descriptive survey investigating pre-registration student nurses´ perceptions of clinical skill development in clinical placements. Nurse Education Today 33, 425-430.

Verkkovirta 2016. Verkkovirta – new forms of studification in collaboration between higher education and work. Available at: http://www.amkverkkovirta.fi/english   Accessed 5 June 2016.

Walker, R., Henderson, A., Cooke, M. & Creedy, D. 2011. Impact of a learning circle intervention across academic and service contexts on developing a learning culture. Nurse Education Today 31, 378-382.

Real life solutions to real life problems: Living Labs approach within university of applied sciences pedagogical practice

Recently, institutions of higher education have adapted practices that bring together students, members of the teaching staff and institutional partners. It is typical for these practices that students work in teams to solve challenges provided by partnering institutions (private business, public agencies, NGOs, etc.).  Current pedagogical theories fail to cover certain aspects of these practices. The aim of this article is to describe pedagogical practice in question through theoretical inquiry and a case study. As a result, the Living Labs approach is proposed in order to complement current pedagogical theories.

Questions of learning and how the pedagogical process should by designed accordingly are central to each pedagogical institution. As a community of experts, every pedagogical institution needs a shared vision and defined curriculum to be communicated to teachers, students and partners.

Institutions of higher education have adapted practices that bring together students, members of the teaching staff and institutional partners. Students work in teams to solve challenges provided by partnering institutions (private business, public agencies, NGOs, etc.). Also, concepts of innovation and innovation pedagogy are considered important.  Faculty members serve as facilitators. They mediate between the wishes of the partnering organizations providing the student teams with tasks and requirements of the curriculum.

Even within Finland, examples are many. University of Tampere has Demola, Laurea University of Applied Sciences has introduced Learning by Development. Metropolia University of Applied Sciences has Minno and Aalto University has developed similar practices (i.e. Hämäläinen 2015).

As a case author uses his employer, Diaconia University of Applied Sciences. Diaconia University of Applied Sciences (Diak) is a nation-wide university of applied sciences, which offers Bachelor’s degree programmes in social services, youth work and diaconia, nursing, sign language interpreting, and community interpreting. All Diak’s five campuses are actively engaged in the development of social and health issues in the regions where they are set. Diak has about 3,000 students, which makes Diak the largest higher education institution providing social work education in Finland. Diak has a distinct profile among the Finnish higher education institutions in immigration and refugee issues, the work against poverty and marginalization, and social inclusion. (Diaconia University of Applied Sciences, 2016.)

Author works as a lecturer and development team leader in Diak. Author has taken part in the process described below.  First of all, author and his team designed the new thesis process to fit into Curriculum 2015 and ideals presented in OSKE –pedagogy.  Secondly, team has implemented these ideals into study assignments and instructions. Thirdly, team has been central in communication new practices to students and staff members.

Knowledge creation approach in pedagogy

Pedagogical practice referred to above falls under the constructivist learning theories.  In the following different categories within constructivist learning theories are discussed.

Characteristic of the knowledge-creation approach is to examine learning in terms of creating social structures and collaborative processes that support knowledge advancement and innovation. The knowledge-creation view represents a ‘‘trialogical’’ approach because the emphasis is not only on individuals or on community, but on the way people collaboratively develop mediating artifacts (Paavola & Hakkarainen 2005, 539).

Scardamalia and Bereiter (2014) use the concept knowledge creation in order to differentiate between knowledge building and knowledge creation. They see the former as deriving from the learning sciences and latter from the organizational sciences. Both these approaches consider knowledge as created, rather than discovered.

In their view, Knowledge creation refers to learning organizations. Knowledge creation is about a socio-cognitive process in which the tacit knowledge of individuals figures centrally both as source and an outcome. Organizations develop and became more productive and efficient through the knowledge  process of knowledge creation. Also, within the knowledge creation approach, students are valued for their contribution. Students learning is not a process taking place within their minds. Rather, learning is a shared process aiming for a certain outcome.

While organizational sciences see learning and human development as tools for better organizational performance, learning sciences consider learning and human development as aims in themselves. What can we expect of the students, and what conditions for leaning and development can we set?

Insightful interpretations or explanations of the work of others qualify as knowledge creation, as do identification and clarification of problems, providing supportive or disconfirming findings, offering a different perspective on an issue, and even popularizing knowledge advances – putting them within reach of the less sophisticated. All of these are within the capacity of students working collaboratively. (Scardamalia & Bereiter 2014, 398.)

One strong argument for the knowledge creation approach within learning sciences is that they prepare students for the current conditions of life in general and working life especially. These are the 21st century skills for the knowledge driven societies and knowledge driven organizations.

The knowledge creation approach is developed through different concepts.  According to Krajcik & Shin (2014) project-based learning (PBL) environments have certain key features such as (i) the driving question, a problem to be solved; (ii) focus on learning goals; (iii) student participation in scientific practices, etc.

In the pursuit of solving the driving question, students engage in a meaningful process which is characterized by social interaction and the use of cognitive tools. In project based learning, driving questions are selected or students can develop their own driving questions for projects. A good driving question is feasible (students can design and perform investigations in order to answer the question), worthwhile (they contain rich scientific content), (iii) contextualized (relate with real world), (iv) meaningful (interesting and exciting) (v) ethical (not harming the participants’ environment etc.) (ibid. 281.)

Problem based learning, on the other hand, is “an active approach to learning in which learners collaborate in understanding and solving complex, ill-structured problems” (Lu et al 298). Central to problem based learning is the tutorial process. The facilitator, usually a member of the teaching staff, uses different strategies in order to enhance learning and problem solving. These include the use of open-ended and metacognitive questions, revoicing, summarizing, etc. (ibid. 307.)

Also, the role of the problems themselves is high-lighted. Out of four types of problems (diagnostic problems, design problems, strategic performance problems and decision-making problems), two are the most efficient. Design problems and strategic performance problems proved the greatest achievement effects. Design problems involve creating an artifact, generally based on a set of functional specifications. Strategic performance problems ask for “applying tactics to meet strategy in real-time complex performance” (ibid. 304-5).

For the knowledge creation approach in general, Scardamalia and Bereiter suggest that a meta-discourse should be created and supported. This is especially important from the point of view of engagement of all students in sustained creative activities. Metadiscourse is the discourse of the students themselves regarding their ongoing   building practice and discourse. It is a discourse on discourse. Students should be given tools and stimulus to discuss and evaluate their progress, ways of argumentation and recognizing and dealing with obstacles etc. (Scardamalia & Bereiter 2014, 407),

The previous issue relates with the question of adequate and authoritative literature. In an information society, where information is more and more easily available, it has become more and more unclear who or what defines the authoritative sources of literature. Traditionally literature has been regarded as providing the theory on a given issue, while student engagement in the practical process provides the practice or experiment. Who should provide the coherent theoretical and conceptual framework for the students in which to reflect on their practical process?

This is also one of the skills in the 21st century tool box. Transliteracy, the ability to use different sources of information in order to produce a coherent understanding of the phenomena and issue at hand, is a valuable skill.

Bereiter (2014) uses the term principled practical knowledge to refer to know-how combined with know-why. In a more formal manner principled practical knowledge can be defined as “explanatorily coherent practical knowledge” (Bereiter 2014). This type of knowledge is created in the process of solving problems. However, there is an additional element here. Instead of merely solving a problem at hand, explanatorily coherent practical knowledge includes aspects that are useful beyond the immediate problem. These elements enable the development of the field of practice.

Explanatorily coherent practical knowledge does not make a difference between conceptual knowledge and practical knowledge. It is explanatory, it makes easier to understand the issue and the field at hand. Also, it is coherent. Explanatory practical knowledge cannot refer only to one issue or topic. Rather, the reference is on the wider field which is explained and described coherently.

Open Innovation 2.0 and UAS curriculum: the case of Diak

Within the Finnish framework, institutions of higher education are relatively free to set they own curriculum. Legislation (Ammattikorkeakoululaki 20.3.2015/325 14§; Valtioneuvoston asetus ammattikorkeakouluista 18.12.2014/1129), the definition of competences for each profession (i.e. social worker, nurse, etc. defined by network of UAS’s) and the UAS contracts with Ministry of Education set a frame for institutions of higher education to create they own curriculum.

Diak published a new curriculum in the fall of 2014. Compared with the previous one, Curriculum 2015 is structured differently and includes new biases. Here I will focus only on the issues relevant to the topic at hand, without trying to cover all the aspects of Curriculum 2015.

From the RDI point of view, Curriculum 2015 builds on the idea and practice of participatory action research. Partners, citizens and service users should be included in the RDI process. They should not be considered as objects of the study. Rather, they should be understood as active participants of the process. Within Diak, participatory action research goes under the acronym OSKE (Osallistava ja tutkiva kehittäminen; see Gothoni et al 2015).

Even if the thesis process is traditionally the central channel for a student to take part in RDI, Curriculum 2015 aims further. Participatory action research should be present also in other study units, not only in those related to thesis process.

On the level of implementation, this means the integration of different processes. These include the process of the students, the Diak RDI –process and the process of the Diak partners. Within Diak, there had been previous attempts to integrate these aspects. However, Curriculum 2015 is unique because for the first time these ideas are included in the curriculum. Previous attempts to bring together the student process with RDI were less structured and based on the decisions of individual lecturers. Within Curriculum 2015 there are specific study modules under the OSKE head-line to give a defined place and room for the practices integrating the students’ process, the RDI –process and the needs of the Diak partners.

Having a new curriculum is not enough, however. An implementation process is also needed. Implementation took place in phases. The way to arrange the co-operation between the students, lecturers and Diak partners is based on the long lasting collaborative workshops. These workshops are called OSKE -workshops. Several workshops were to be set up, each based on the specified theme. The core of each workshop is practical co-operation between the Diak teaching staff (i.e. lecturers) and the representatives of Diak partners.

Since the OSKE –study modules form the core of the thesis process for the student, it was necessarily to make sure that these study modules provide possibilities for students to plan and execute one’s thesis process. During the process, questions of innovation pedagogy and entrepreneurship studies were taken up. As a result, Innovation pedagogy and entrepreneurship studies were considered necessary to include these aspects into the OSKE –study modules.

In order to facilitate different ways of developing and indicating students’ professional competencies, an OSKE –blog was developed and taken into use in spring 2016. This is based on the older Diak experiment with a blog provided for students (Alavaikko 2010). The OSKE –blog provides an easy access publication channel for students to publish their texts, videos, photographs etc. The OSKE -blog also creates a semi-open forum for communication between students, lecturers and Diak partners. Students and the Diak staff can comment on each other’s ideas, external experts and Diak partners can be invited to comment on a student’s publications. (Alavaikko 2016.)

Arenas for interaction

Several arenas for interaction were created. First of all, the OSKE blog aims to bring together students, lecturers and Diak partners. It provides a possibility to communicate ideas and implementation plans from students to lecturers and Diak partners. Furthermore, OSKE blog gives a possibility to comment on these ideas and develop them further.

Since the first study modules were implemented fall 2015, became apparent that a forum for student recruitment was needed. There was no channel to recruit students into the OSKE –workshops.  To meet the need for student recruitment, the first OSKE –forums were arranged in February 2016. The OSKE –forum is an event taking place in each of Diak campuses. OSKE –forum lasts approximately 3 hours and brings together students, Diak lecturers and Diak partners.

The OSKE –forum is a key element in combining the student process, the Diak RDI -process and Diak partners. Their schedule defines possibilities to combine processes of different shareholders. For instance, there are short term projects (1-4 months). They have a limited possibility to be linked with the students’ process. On the other hand, scheduling OSKE –forums beginning at the beginning of the term, means that planning needs to be done during the previous term. Lecturers need to work with their partners, plan what they provide for the students at the next OSKE -forum and during next term.

This way, several arenas for interaction were created. First of all, OSKE workshops are the central element of the system. They are the ones where cooperation takes place, where credits are turned into action and practical real-life problems are solved. These long term processes bring together students, staff members (lecturers and RDI) and partners (business, public sector, civil society).

On the other hand, OSKE forums, arranged 1-2 times every semester at every Diak campus, are the arena for networking and student recruitment into OSKE workshops. Thirdly, the OSKE –blog makes one arena of its own. While the OSKE forums take place 1-2 times every semester, the blog remains. Future students can build on the texts and other products published by the previous student generations, students can interact amongst each other and exchange ideas with the Diak staff members and partners.

The blog for testing one’s ideas is central during the first stage, innovation and planning. Innovation and planning of one’s process consists of two courses, one focused purely on innovation and the other focused on creating a plan for executing and documenting one’s idea. Students’ ideas are based on the earlier Diak projects with domestic or EU funding, and/or ongoing cooperation with our partners. These ideas are published in the blog. This means that ideas can be commented on by ‘outsiders’, outsiders referring here to representatives of projects and organizations outside Diak.

Several cooperation processes between students, faculty members and partners are currently taking place. (i.e. Alavaikko et al 2016). Considering these experiences, it is possible to reflect between the pedagogical theories (above) and reality of the pedagogical practice within Diak.

As discussed by Krajcik & Shin (2014) above, experience has proved that the nature of the problem is significant. Also, the tutorial process is of central importance, as pointed out by Lu et al. (2014). However, there is a certain aspect in Diak OSKE –practices that theoretical approaches above fail to acknowledge. All problems, tasks or challenges that students are facing within OSKE practices, are real. They are provided by Diak partners (private, public, NGOs) for the student teams. The student teams then work collaboratively in solving these problems, in projects facilitated by staff lecturers. In order to highlight this aspect, the Living labs approach is defined below.

Living Labs approach and Open innovation 2.0

By Living labs, we mean reconstructing the interaction space. This space for interaction can be any space, anywhere, suitable for collaborative design, the application of knowledge for empowerment, uplift, and the development of people and communities for the use of innovation. (quote from the interview, Leminen et al 2012.)

Living labs wish to accentuate their informal nature and define themselves as a movement (Garcia et al. 2015, 16-27). Still, there are certain ways of formalizing Living labs. Living labs are benchmarked by European Network of Living Labs (ENoLL), and through benchmarking process it is possible to get a membership in ENoLL. Five basic requirements for a Living labs are as follows:

  • active user involvement (i.e. empowering end users to thoroughly impact the innovation process)
  • real-life setting (i.e. testing and experimenting with new artefacts ”in the wild”)
  • multi-stakeholder participation (i.e. the involvement of technology providers, service providers, relevant institutional actors, professional or residential end users)
  • a multi-method approach (i.e. the combination of methods and tools originating from e.g. ethnography, psychology, sociology, strategic management, engineering)
  • co-creation (i.e. iterations of design cycles with different sets of stakeholders).

(Garcia et al 2015, 19)

Apart from this ‘official’ definition, Living lab is also used as general reference to practices and organizations of similar characteristics, with or without membership in ENoLL (i.e. Curley 2016, 314). In this general sense Living Labs refer to user-centric research methodology for sensing, prototyping, validating and refining complex solutions in multiple and evolving real life contexts.

In fact, Living labs are usually seen within the discourse of innovation and co-creation. Open Innovation 2.0 and the concept of innovation ecosystems put innovation onto the forefront. Innovation is regarded as a driver for economic growth. (OECD 1998). For these reasons, innovation discourse has a strong political backing and therefore innovation draws economical and other resources. In the current discussion, Open Innovation 2.0. and innovation ecosystems came hand in hand.

[i]nnovation as a discipline has now moved from being something invented by a brilliant researcher, through the era of open innovation, into an ecosystem-centric view of innovation, where the ecosystem is often the distinguishing unit of success, not individual companies or universities. (Curley & Salmelin 2013, 3.)

No company or institution of higher education can pursue their aims alone. Co-operation is the key to success. What is also needed is openness. Ideas need to be tested and developed together or by the users, not in an isolated laboratory.  Quaprable helix refers to academia, government, civil society and business to work together in developing products and practices (Curley & Salmelin 2013; Curley 2016).

In a sense, the circle is full: the innovation ecosystem, with co-operation and co-creation between academia, government, society and business, provides a framework and a function for institutions of higher education to engage in development processes, providing challenges for students and staff members alike. On the other hand, institutions of higher education want to ‘mingle in’, they wish to be part of the regional ecosystem of private companies, public sector organizations and civil society. They wish to find they place in the quaprable helix for Open Innovation 2.0, formed in the co-operation of academia, government, private sector and civil society.

As for the concepts, I will use the Living Labs approach in order to refer to the web of concepts created by Living Labs, Open Innovation 2.0 and Innovation ecosystems. They are interlinked and related, even if they all have they own point of reference. The idea of innovation ecosystems forms the rationale for institutions of higher education to seek their place alongside the public sector, the private sector and civil society. Within this framework, institutions of higher education seek to relate with local and global systems of innovation, economics and production (i.e. ecosystem).

Open innovation 2.0 comes hand-in-hand with the idea of innovation ecosystems. Open Innovation 2.0 underlines the open nature of the way innovations are understood to come about. While RDI used to be the business for the highly ranked experts, innovation is currently understood as an open, almost chaotic system where the brokering of seemingly unfitting ideas and approaches plays the crucial role. Innovation is not about geniuses in their ivory towers, innovation is about every one of us relating our ideas with others.

The driving force behind Open Innovation 2.0 and Innovation ecosystems is that innovation is believed to be the central ingredient of economic growth. Living Labs, both in their formal and loose sense, form the practice where the representatives of academia, civil society, public and private sector come together for innovation. Universities feel the pressure: the list of most innovative universities in the world was currently published (Ewalt 2015).

Without the openness of the current practice of innovation, students who are not yet experts would not have a role in the innovation. Within the framework of Open Innovation 2.0 students can represent the everyman and everywoman in the innovation process, while at the same time learning the ideas and procedures of the innovation. Organizations representing the private and the public sector and civil society are the ones that UAS’s co-operate with, in that they bring them into contact with students. These organizations provide students with content, with tasks for their assignments, team-works and theses. It is then a task for the teaching staff to arrange and formulate these tasks so that they communicate with the curriculum and are functional and logical from the pedagogical point of view.

It should also be noted that the discourse of innovation forms something resembling an ideology. Key words are the economic growth and national competitiveness, as Professor Pauli Kettunen has pointed out (Kettunen 2011). Innovation discourse is not politically or socially neutral. According to Kettunen, innovation discourse it is not merely a question of how to arrange elements of RDI in the best possible order. Innovation discourse has its connotations and political implications also.


I propose the Living Labs approach to be used when referring to pedagogical practices that fulfill the following criteria:

  • real life problems and challenges (the public sector, the private sector, NGOs) are brought into pedagogical practice
  • activity takes place in an ecosystem (multi-stakeholder environment)
  • active user-involvement is central for the process

The Living labs approach does not remove a need for other theoretical concepts. On the contrary, the knowledge creation approach in general and problem based learning and project based learning are the most relevant tools in analyzing and designing the students’ processes within the Living Labs approach.

It is also important to differentiate the Living Labs approach from other pedagogical approaches within knowledge creation. Differentiation is important in order to be able discuss possible problems and challenges.

For instance, it is possible that a focus on the needs of the partnering institutions and their clients overshadows the pedagogical aims. The development and learning of the students should be the aim of the pedagogical institutions. How to combine this aim with the aims of partnering organizations?

The Living Labs approach brings into light further topics. A significant dimension is that attention should be paid to the problem itself. In this respect, problem based learning identifies two dimensions. First, how structured the problem is, and secondly, how complex the problem is (Lu et al 304-305). However, the framework where the problem is set receives less attention. Within the Living Lab approach, problems are supposed to be real-life problems. Urge to solve real-life problems with real-life partners creates a new, difficult-to-control dimension into the learning process.

Even if the literature suggests that problem based learning should be the core of the curriculum rather than an addition (Lu et al 2015, 300), there are also other catch-words present. Innovation pedagogy, entrepreneurship studies, start-ups… How to relate these together, how to include these aspects into a curriculum and still have a logical and approachable curriculum?

It is, however, also a pedagogical and practical question how to arrange the principles of Open Innovation 2.0 and Living Lab within an institution of higher education. How to create arenas for sharing and discussion and interaction (civil society, business, government) within a pedagogical institution? What type of the student process is needed and what type of arenas (virtual, face-to-face, mixed, etc.) are needed at the different stages of the process? How to link the pedagogical approach with interests in business and government and civil society interests?

Also, an ecosystem -type of environment (different types of organizations, focus on the contacts, sharing and learning between organizations, not within a given organization) poses new challenges from the pedagogical point of view. There is a significant amount of literature on the management of innovative ecosystems and networks (i.e. Harmaakorpi 2013; Parjanen 2014; Prince 2014). This literature needs to be related with pedagogical theory and practice.


Mika Alavaikko, Lecturer, development team leader, Master’s Degree in Social Sciences, Diaconia University of Applied Sciences, Finland, mika.alavaikko(at)diak.fi

Alavaikko, Mika. 2010. Blogipohjaisen verkkoalustan käyttö ammattikorkeakouluopetuksessa. In Hankekirjoittaminen., eds.  Pirjo Lambert, Liisa Vanhanen-Nuutinen.

Alavaikko, Mika. 2016. Blog as an arena of cooperation in problem based learning. Paper presented at ICERI 2016, Seville, Spain. [forthcoming]

Alavaikko, Mika, Katisko, Marja, Riihimäki, Titta and Sukula-Ruusunen, Kirsi. 2016. Yhteisöllinen kehittämisprosessi Katriinan sairaalassa. In Diakin pedagoginen vuosikirja 2016., eds. Raili Gothóni, Marjo Kolkka. [forthcoming]

Ammattikorkeakoululaki 20.3.2015/325.

Bereiter, Carl. 2014. Principled practical knowledge: Not a bridge but a ladder. Journal of the Learning Sciences 23 (1): 4-17.

Curley, Martin & Salmelin, Bror. 2013. Open innovation 2.0 — A new paradigm. Paper presented at EU Open Innovation and Strategy Policy Group.

Curley, Martin. 2016. Twelve principles for open innovation 2.0. Nature 533 (7603): 314-6.

Diaconia University of Applied Sciences 2016, webpages, http://www.diak.fi/en/Pages/default.aspx. Retrieved 5th of October 2016.

Ewalt, David. 2015. The World’s Most Innovative Universities. Reuters, http://www.reuters.com/article/idUSL1N11K16Q20150915. Retrieved 5th of October 2016.

Garcia, Ana Garcia, Anu, Hirvikoski, Dimitr, Schuurman, and Lorna Stokes, eds. 2015. Introducing ENoLL and its living lab community. First ed. Brussels: European Network of Living Labs.

Gothóni, Raili, Susanna, Hyväri, Marjo, Kolkka, and Päivi, Vuokila-Oikkonen, eds. 2015. Osallisuutta, oppimista ja arviointia : Diakonia-ammattikorkeakoulun TKI-toiminnan vuosikirja 2015. Helsinki: Diakonia ammattikorkeakoulu.

Harmaakorpi, Vesa. 2013. Complex adaptive innovation systems. Papers in Regional Science 92 (2): 440-2.

Hämäläinen, Erkki. 2015. Experiences of a professor of practice at Aalto University. In Orchestrating regional innovation ecosystems., eds. Pia Lappalainen, Markku Markkula and Hank Kune, 191. Finland: Aalto University in cooperation with Laurea University of Applied Sciences and Built Environment Innovations RYM Ltd.

Kettunen, Pauli. 2011. The transnational construction of national challenges: The ambiguous nordic model of welfare and competitiveness. In Globalization and welfare : Beyond welfare state models : Transnational historical perspectives on social policy., eds. Pauli Kettunen, Klaus Petersen, 16-40. Cheltenham, GB: Edward Elgar Publishing Limited.

Krajcik, Joseph S., and Namsoo Shin. 2014. Project-based learning. The Cambridge Handbook of the Learning Sciences (2nd Ed.).: 275.

Leminen, Seppo. 2012. Living labs as open-innovation networks. Technology Innovation Management Review 2 (9): 6-11.

Lu, Jingyan. 2014. Problem-based learning. The Cambridge Handbook of the Learning Sciences (2nd Ed.).: 298.

OECD 1998. Technology, productivity and job creation best policy practices. Paris.

Paavola, Sami, and Kai, Hakkarainen. 2005. The knowledge creation metaphor–an emergent epistemological approach to learning. Science & Education 14 (6): 535.

Parjanen, Satu. 2010. Collective creativity and brokerage functions in heavily cross-disciplined innovation processes. Interdisciplinary Journal of Information, Knowledge & Management: 1-21.

Prince, K. 2014. Dialogical strategies for orchestrating strategic innovation networks: The case of the internet of things. Information and Organization 24 (2): 106-27.

Scardamalia, Marlene, and Carl Bereiter. 2014. Knowledge building and knowledge creation: Theory, pedagogy, and technology. The Cambridge Handbook of the Learning Sciences, Second Edition: 397-417.

Valtioneuvoston asetus ammattikorkeakouluista 18.12.2014/1129.

Oamk LABs practices for bridging work life 21th century skills and higher education

Problem and context

The demand for professionals who are able to create new solutions and innovations across disciplines, professions and perspectives is increasing. Innovations are needed for creating economically and ecologically sustainable communities (Capra 2007; Dumont and Istance 2010) and they are dependent on the capacities of people, organizations and networks to create and utilize knowledge (Boreham and Lammont 2000). Practitioners are functioning in societal structures and organizations that are constantly changing since expertise is no longer manifested exclusively in performing known tasks in a particular setting. Challenges that often cannot be addressed by routine solutions are constantly arising. These challenges have to be addressed by experts from different fields collaborating across different contexts (Engeström, Engeström and Kärkkäinen 1995; Tynjälä 1999). These are often called wicked problems, as they are characterized by confusing data, multiple users with differing values and not having a right or wrong answer. Furthermore, any possible explanation for one of these problems is strongly dependent on the worldview of the designer (Buchanan 1992).

The development in society and the economy described above requires that educational systems equip young people with the right competences that include attitudes, skills and knowledge to allow them to contribute actively to economic development under a system where the main asset is expertise. These skills and competencies, 21st Century Skills, are closely related to the needs of emerging models of economic and social development than with those of the past century, which were more suited to an industrial mode of production (Ananiadou and Claro 2009). Universities and institutions for vocational higher education are all challenged to educate these knowledge workers, since students of vocational education today are expected to function in a knowledge-based society.

As questioned by Ritchhart (2002),

“What if education were less about acquiring skills and knowledge and more about cultivating the dispositions and habits of mind that students will need for a lifetime learning, problem solving and decision making? What if education were less concerned with end-of-year exam and more concerned with who students become as a result of their schooling? What if we viewed smartness as a goal that students can work toward rather than as something they either have or don´t have?”

We, the authors, believe that 21st Century Skills represent the lens through which to address these questions. This article is an overview of the case of Oamk LABs which educates for those skills in higher education within a LAB studio model educational setting. The skills described within Oamk LABs education case, include descriptions of key practices as well as Oamk LABs student experiences with quotes from self-evaluations, course feedback or thesis work.

Studio pedagogy and LAB studio model

Studio based pedagogy

Studios have been used for educational purposes for centuries and can be traced to Middle Age schools of art and architecture. Today, besides the worldwide usage of studios in those schools, central features of the studio model of education hold interesting possibilities for education in other fields of vocational education as well for example in computer science (Kuhn 2001; Bull and Whittle 2014; Carter and Hundhausen 2011).

Studio based pedagogy can be defined as an instructional strategy that provides students with opportunities to engage in relevant, authentic learning in a school setting (Boyer and Mitgang 1996; Burroughs, Brocato and Franz 2009). The basic objective of the studio is to practice professional skills in small groups where one’s professional skills are challenged by others ­both peers and mentors (Schön 1983,1987). Studio based pedagogy is a constructivist approach, utilising project based learning (Blumenfeld et al., 1991). Also the approach of learning­-by-­doing, initially promoted by John Dewey (1897), is also a critical pedagogical principle. In this way, studios parallel the need for collaboration and creativity existing in work­place environments in the creative disciplines, design, art, etc. Traditionally, studios focus on visually ­centred work; and “reflective practice” (Schön 1987) observing and refining practice in a continuous cycle, supported by coaching and peer ­learning.

Studio based pedagogy suggests a more practical approach to professional education. Schön (1983) summarizes this process as reflective practice or “knowing­ and reflecting-­in-­action”. Pakman (2000) adds that this model of learning can allow practitioners to reconstruct their theories of action making and form action strategies explicitly open to criticism. This process is aligned with the knowledge creation practices, e.g. SECI-model (Nonaka and Takeuchi 1995). Another aspect of the studio model is the use of real world problems around which teaching is constructed (Schön 1985). Overall, research related to design education suggests that studio­ based pedagogy is an effective method for cultivating students’ identities as designers, developing their conceptual understanding of design and the design process, and fostering their design thinking (Kuhn 1998, 2001; Schön 1983).

LAB studio model characteristics supporting connection to work life

The LAB studio model (LSM), as a pedagogical model utilising studio based pedagogy, is a higher education model aimed at training competent new professionals, self-­directed teams and new businesses. The recent publication by Heikkinen and Stevenson (2016) has shown LSM to include several new factors compared to existing definitions of studio based learning such as by Bull, Whittle and Cruickshank (2013). According to Heikkinen and Stevenson (2016), these factors include:

  • offering a form of instruction that is more competitive in structure in contrast to other studio models (competitiveness);
  • integrating experienced professionals and coaches from the industry (work-life connection);
  • including problems or ideas directly from targeted industries;
  • building project teams that cross professional and higher education faculty boundaries (interdisciplinary).

The factors above described factors support the development of T-model learners and 21st Century Skills. Professionals having T-shaped skills “are deep problem solvers in their home discipline but also capable of interacting with and understanding specialists from a wide range of disciplines and functional areas” (IfM and IBM 2008).

LSM supports the work-life connection through various themes. By being intergenerational, interdisciplinary and international, project teams are connected to diverse expertise and experiences. The project based learning method involves interaction with an external client and starting from the problem connects both students and coaches to the industry, as well as the reflective practice given by industry participants. New knowledge is created in organised and impromptu common happenings where social interaction, networking, informal peer-coaching and critique or constructive feedback is promoted.

LSM is founded on two values: Trust and Care. In general, these values reflect the LAB’s inherent entrepreneurial thinking and approach to problem solving. Among other things, the value ‘Trust’ refers to the fact that students are trusted to do their best towards the common goals defined within their team, leading to trustful and equal relationships, which also concern staff of the LABs. The value ‘Care’ means taking proper care of everyone and everything involved, from the educators and students to the development and learning results of the projects and teams. This value also emphasises tutoring as a means for ensuring professional growth during and after the LAB studies (Heikkinen 2014). Failures and mistakes are considered an essential part of the learning. Students have to face the challenges, practice and find new solutions after they have recognised their mistakes. Learning and success is a result of effort and self-inquiry. This is viewed as the way to support students to become more independent learners (cf. Dweck 2009; Saavedra and Opfer 2012).

Oamk LABs Studies

Established in 2012, the Oamk LABs are a higher education program offered at the Oulu University of Applied Sciences (Oamk) in Finland. This program is based on the LSM and is a full-time, interdisciplinary, international and intergenerational program to train new professionals and build new businesses. The Oamk LABs can be characterized as pre-incubators (Heikkinen , Seppänen and Isokangas 2015) where students are working together in interdisciplinary teams to build real prototypes, products and possible startups. As of January 2016, Oamk LABs consists of three LAB studios (LABs) each targeting a specific global industry: Oulu Game LAB (games industry), EduLAB (edtech industry) and DevLAB (health, energy and environmental industries). The Oamk LABs program is taught in English and currently brings together roughly 150 students from around the world, with a new cohort joining the LABs every semester.

Picture 1: A LAB Master advising a student.
Picture 1: A LAB Master advising a student.

The first part (one to two semesters) in Oamk LABs consists of two main phases: a concept development phase, called LEAD, and a demonstration development phase, called LAB. In the LEAD-­phase students produce concepts for needs provided by existing companies, organisations or from the participants themselves. The concepts are presented in specific events called Gates. (Heikkinen 2014). In the LAB­-phase, larger teams are formed to develop demonstrations (demos) of the concepts and a related business model. The LAB­-phase and the first semester ends with a final presentation event, which is open for all the students and LAB staff, as well as for professionals from the industry. In the events, student teams present their solutions and business models to receive customer oriented and professional feedback. The second semester is optional for the teams which are willing to continue developing their demonstration into a more complete product and it includes more focused business and product delivery coaching and connections to the industry.

The students participating in Oamk LABs in Spring 2016 were from various fields of study and represented over 30 different nationalities. The fields of study were teacher education, software engineering, business development, graphical design, social work, occupational therapy and physiotherapy with the addition of unemployed professionals. A wide range of experience and expertise is expected to cover the key areas of competences necessary for establishing new ventures (Timmons and Spinelli 1994) – start­up companies for the industries in focus. This also brings possibilities for students to gain valuable skills:

“Working in an interdisciplinary team has been new for me. This might have been the best experience I’ve had in DevLAB. Learning about each other’s background / culture was really important for me. This way of group work also improved my competences about responsibility and organizing, because every culture and background needs another kind of behavior.” (Industrial engineering student, The Netherlands)

Each Oamk LABs studio is led by a LAB Master. Together with coaches and tutors the LAB Master acts as a supervisor of learning and directs the students to find and build new knowledge and to commit them to work toward the promotion of learning. The staff has the responsibility of supporting student development, both in terms of specific professional career goals and in their project task and goals (Heikkinen and Stevenson 2016). Additionally in studios, coaching often requires the improvisation of teaching (Sawyer 2004). At Oamk LABs this calls for variations of methods used at the moment of coaching.

As a result, over the four years that the model has been developed a significant amount of students, credits and companies have been achieved. Based on the Oamk internal statistics (Oamk LAB´s Yearly Statistics 2016) between the years 2012-2015 Oamk LABs resulted in: roughly 600 new professionals, over 15000 ECTS credits, 152 new concepts, 59 demonstrations and 14 new enterprises. Oamk LABs has also been externally acknowledged to be the most innovative higher education model in Finland. In 2014 the LAB studio model was recognized for its ”Innovation and Entrepreneurship Teaching Excellence” and in 2016 Oamk LABs received the second highest honour at the European Conference on Innovation and Entrepreneurship conference award for Innovation and Entrepreneurship Teaching Excellence (ECIE 2016).

Learning and 21st Century Skills

Twenty-first Century Skills or competences are described by various sources (Ananiadou and Claro 2009; Binkley et al. 2012;  Burkhardt 2016; Dede 2009;  P21 2011). In Oamk LABs, these competences are seen as a dynamic combination of knowledge, attitude and skills (c.f.Ananiadou and Claro 2009). The competence areas at Oamk LABs are presented in Figure 1. We believe that the development of these six competence areas leads to a future professional mindset where the core is a positive attitude towards innovation and development. The facets of the future professional mindset are: confident person, concerned citizen, self-directed learner and an active professional. For each competence area, the model uses various learning methods and methods often overlap several competence areas.

Figure 1: 21st Century Skills at Oamk LABs
Figure 1: 21st Century Skills at Oamk LABs

Communication and collaboration

Professionals focusing on knowledge economy work require efficient skills for communicating and for working in teams. The ability to collaborate with others is one of the most important 21st Century Skills and also important for active lifelong learning (Saavedra and Opfer 2012). Future professionals need to be able to communicate face to face, by using distance communication tools and in different languages. They need to be clear both orally and in writing when using professional language to be able to influence and persuade others. They need to have effective team working skills: the ability to relate with others, to have patience with others, to trust others and skills to present, negotiate and listen actively (Dede 2009).

When working in teams at Oamk LABs, students have to overcome the lack of a shared vocabulary and different communication cultures. Because of the so-called disciplinary “silos” (Ashcraft 2011; Cohen and Lloyd 2014), students from different professions are speaking different professional languages. In order to work and develop concrete, user-centred projects and products in cooperation, students need to learn to understand each other’s professional terms and meanings and the way of communicating. Students also recognise the learning in themselves:

“Regarding communication and collaboration I feel that I have made significant improvements during Devlab. Working (…) has improved my overall team working skills, but also improved my personal communicational skills as well. I am more ready to start conversations both regarding project and other non-project related things as well.” (Master of Science Information system design Oamk Open University student, Finland).

Students learn how to observe body language and acquire skills to know how and when to show empathy. During the LAB each student gives multiple presentations. This is one way to learn how to communicate information and ideas to different audiences using a variety of media and presentation formats. Additionally, students develop networks in order to build collaboration that supports their future careers. During studies in Oamk LABs, the students’ learning network expands significantly (Heikkinen et al. 2015).

Disciplinary knowledge

Students at Oamk LABs are usually 3th or 4th year Bachelor or Master degree undergraduate students. Before joining a LAB, students need to have solid knowledge in their own discipline since during the LAB program they need to bring the skills and knowledge of their own profession into an interdisciplinary team. Students must use a wide range of content knowledge within their disciplines and profession: existing disciplinary knowledge, expertise, skills, networks and communities, professional interest areas and understanding of the future challenges in the field, and professional and research approaches.

While working as part of an interdisciplinary team, students learn how to apply and deepen their disciplinary knowledge and professional roles. Each student and profession is served by coaching specifically targeting his or her professional roles. Projects are also served by mentors to ensure an industry customer relationship (Carnell, MacDonald and Askew. 2006). Coaching and mentoring is performed by the teachers and external experts. The learning process is viewed as a process of learning and building new knowledge, which is shared within and between professions as peer-­learning (c.f. Boud, Cohen and Sampson 1999; 2014). The challenge has been ensuring that the learning of disciplinary topics of the curriculum studies fit with the requirements from the degree program. The solution for the above challenge has been to create an agreement associated with the individual learning objectives for each student together with their personal goals and a commonly defined curriculum together with the degree programs and Oamk LABs.

Teamwork is done in an unfamiliar and challenging context which requires students to apply and recognize their knowledge and share it with students from other fields. They learn about other professions, but most of all about their own profession and how they as representative of his/her own profession can contribute as a team member. Furthermore, students learn T-shaped skills which are required in order to effectively interpret and utilize unfamiliar knowledge for exploration focusing on gaining new knowledge aimed at innovation (c.f. Hamdi, Silong, Omar and Rasid 2016). Students are also gaining experience about how work should be done and divided for the best result from the product development point of view, such as demonstrated by the following lead software developer:

“…the thing that I learned is how to split the work among developers, making sure that not only everybody gets a fair share of the work, but also importantly, that our works do not conflict with each other’s when we merge our work tighter.” (Information Technology student, Lithuania).

According to Litendahl (2015) and Perka (2016), studying at Oamk LABs develops disciplinary competences and even new, future-related competences (Litendahl 2015) as well as knowhow to use disciplinary competences become wilder (Perka 2016).

Responsibility and global awareness

To effectively develop user-centred innovations, professionals need to have the ability to empathise and share the pain of the user. This means courage to respect differences of cultures, ways of living and values of people (c.f. Ikeda 2005). When truly doing this, professionals become more aware about the global needs, limitations, opportunities and future trends. Responsibility becomes a personal obligation to be productive, including intrapreneurship and entrepreneurship, and the work has to respond to the needs of the customer.

Sustainability is a central theme in DevLAB for the academic year of 2016-2017. Sustainability is accepted nowadays as a guiding principle by public policy making and companies (Finkbeiner, Schau, Lehmann and Traverso 2010). Moving towards the goal of becoming more sustainable requires fundamental changes in attitudes and behaviour. Every student learns accountability, personal and social responsibility and being a responsible team member. For many students, the way to approach clients and customers to find solutions for real life problems is different from what they have had before:

“Now I know how to ask the right questions without leading (myself or the person to interview) too much to the solution that I have on my mind. This enables me to get the honest answers to the problem I’m solving.” (Business information systems student, Finland).

One practice used to become more aware about global issues and responsibility is a Megatrends workshop. Within Megatrends workshops students deepen their knowledge about a global megatrend, which is connected to the actual problem they will be dealing with later in the program. During the spring 2016, key megatrends that students were studying were: aging, urbanisation, decline of resources, digitalisation, global environmental change, rising healthcare costs, the changing nature of work and the rise of personalisation. Students got familiar with the megatrends during the first week of the semester and they prepared short presentations for the group. This was one way of preparing students for the mindset of being active and using all available expertise in the LAB. At Oamk LABs new knowledge is created in cooperation between students, coaches and work­-life partners, thus forming a community of learners (c.f. Brown and Campione 1994; Rogoff, Matusov and White 1996). This allows students to create some common understanding about the world.

Creativity and innovation

According to the organization Partnership for 21st Century Learning (P21 2004), there are three skills essential for creativity and innovativeness: thinking creatively, working creatively with others and implementation of innovations. In order to think creatively one needs to use a wide range of idea creation methods or techniques. Future professionals have to know how to create new and viable ideas both by themselves and as part of different teams. To work creatively with others means developing, implementing and communicating new ideas effectively to others. Future professionals need to be open and receptive to new ideas and diverse perspectives. They also need to have a mindset that being creative and innovative is a long-term cyclical process, floating between mistakes and success. They also have to tolerate that it could take a lot of time to create something real, unique and useful. This happens only if one is curious and ready to take some risks. In order to be able to think and act like this, the professionals have to have creative confidence – a mindset to see one’s own creative potential (c.f. Kelley and Kelley 2013).

Learning by doing as a work-based learning method has been recognized for a long time as an important way of learning innovation creation (Toner 2011). Learning in Oamk LABs is strongly based on the concept of learning by doing; developing a concept for a product or a service. In Oamk LABs, the Concept Development Process has been used based on the Design Thinking (Brown 2008) methodology in the academic year 2015-2016. This process was an experiment to see how Design Thinking fit in with the LAB Studio Model. Students were creating solutions for various different user groups and needs well outside of their own experience. The concept development process, not based on any of the fields of the students, is an equalizing force that allows everyone to participate. The promise of design thinking is that anyone can do it if they follow the mindset. For the spring semester 2016, the concept development process was fully implemented and realized as two subsequent cycles though the design thinking modes during the Lead phase to create a solution concept (Karjalainen 2016).

Critical thinking and civic literacy

Open-mindedness, flexibility, willingness to self-correct and pursuit of consensus are needed skills for future professionals. These are also characteristics of a critical thinker. Professionals, who are critical thinkers are motivated to exercise the effort needed to work in a resourceful manner, to check for accuracy, to gather information, and to persist when the solution is not obvious or requires several steps (Halpern 2003). Critical thinking uses evidence (Halpern 2003) and that is why it is connected to skills of civic literacy.

The aim of learning critical thinking is to help students to develop their abilities to reason, analyse, evaluate and create. Students need to develop these abilities and at the same time learn to express one’s feelings, thoughts and actions in a way that is rational and clear (Mulcahy 2008). Learning critical civic literacy enables students to question the assumptions that undergird current ideas, practices, policies and structures (Teitelbaum 2011). These are skills needed when students are identifying and defining problems from partners, collecting and analysing data (e.g. identifying existing problems and already made solutions for them in order to find the real problem behind the problem). An essential component for the future work is that professionals are encouraged to think and use their skills in different situations and environments (e.g. skills transfer).

Coaching provides opportunities to learn critical thinking skills. In Open Coaching Sessions students are challenged to discuss, ideate and find new points of views. Both staff members, students from different LABs and external coaches gather together to exchange ideas. Another coaching practice is Professional Coaching within which students of a specific field or profession have either an expert from the industry or coach from the university staff focusing on their specific professional issues and challenges. With the help of coaching, students can critically think about their projects:

“We were able to come up with new ideas, criticise them as much as we could from all areas such as from a business or development standpoint, and then we would research heavily what would need to be done to make the product/service and if there were any similar devices and their downfalls.”  (Graphical design student, Ireland).

Self-knowledge and self-awareness

High self-awareness leads to better team performance; it affects positively to decision-making, coordination and conflict management (Dierdorff and Rubin 2015). The LAB Studio Model-learning is based on reflection and reflection is described as a process of self-analysis, self-evaluation, self-dialogue and self-observation (c.f. Yip 2006). The starting point of the learning process is for every student to identify his / her own needs and goals for learning. This helps students to define what and how they want to achieve their goals as a person and as a team member. Personal development in Oamk LABs is viewed from a team working point of view, thus goals are discussed, defined and reflected with other team members, LAB Masters and tutors. During the course of the LAB, the learning goals are aligned with the project goals.

Personal evaluation discussions are individual meetings with students. Before the meeting the student prepares 2-4 personal development needs from the point of view of their future expertise. Discussions are done with the same person(s) throughout the semester: at the beginning, in midway and at the end of the semester. In spring 2016, one student told about how displeased he was about the quality of his work, his unorganized way of using time and not being productive enough. The student set himself appropriate goals in cooperation with LAB Masters. As part of his self-evaluation, at the end of the semester, he writes:

“I feel I am now much more capable at determining my strengths and weaknesses and I am also much more aware at what my current skill levels will allow me to do. I have realised that rather than doing everyone’s job, I have to have more trust in my team and have one job that is done to its best standard.”  (Graphical design student, Ireland).

During the process of studying in Oamk LABs, goals as well as methods to achieve the goals, are discussed several times both individually and in teams, because goals become more clear and will need adjusting during the study process. Depending on a student’s own wishes this can be more individual, but most students are open and willing to share their personal development areas at least with their team, some of them also with the larger learning community. This enables possibilities to have feedback and support from peers as well.

Development of self-knowledge and self-awareness happens both in planned activities as well as in serendipitous encounters which the LAB learning enables. The goal is to become a more self-directed learner. As a result, learning is dependent on the interests, experiences and actions of each learner and the circumstances in which learners find themselves. The fact that students and staff members are working together in close contact for at least one semester opens the possibility for a trusting relationship to develop. Cooperation with LAB Masters and coaches is partly planned beforehand, but students also know that whenever they need to have coaching, they can ask for it. Acting according to these principles reflects in action one side of the key values of LAB Studio Model, Trust and Care.


As an operational model, Oamk LABs work more as a small company than as a school and according to our values the coaches treat the project teams like startup companies. We allow them to self-organize, divide the tasks and make their development plans. However, to support a climate of critical consciousness, feedback in LABs is given to individuals and to project teams and coaching groups during formal and informal sessions. In this way, giving and receiving feedback is a regular part of LAB studio daily activities. Learning at Oamk LABs mostly happens in relation to the team and the project.

Oamk LABs employ several practices to achieve both the learning goals and to bridge the academic work with the work-life. Some practices happen regularly over the course of a semester while others are one-time events. Figure 2 maps some of these practices with regard to two aspects. The vertical axis represents whether the activity is more team or individual focused and the horizontal axis tracks if the reasoning for the activity is more related to academic work or the work-life. We feel it is important to a have mix of practices for bridging academic training and the work-life while allowing learning to happen both as individuals and as team or group members. Academic methods aim for reflection of one’s values, attitudes and actions, while practices with a team dimension are more closely related to work-life skills and advancing the project goals. These practices teach students to recognize the joys and challenges of teamwork and to value the contributions of team members. This helps to build a future professional with T-shaped skills.

Figure 2: Some practices at Oamk LABs mapped according to the target of the activity and relevance in academic versus work-life needs.
Figure 2: Some practices at Oamk LABs mapped according to the target of the activity and relevance in academic versus work-life needs.

The learning model is built to be flexible so it can accommodate different industries and types of projects, which may require adaptation and addition of new practices. Since the educational model is still under development, new practices are tried out in a limited scope and existing ones aer improved where a need is seen. The following sections cover three practices which specifically deal with bringing the work-life into the studies in more detail.

Practice: Source of project topics

In order to bring the work-life in to Oamk LABs, the student projects start from problems or phenomena related to real cases in the industry. Problems from partners come with a contact person in the industry, but importantly projects are not assignments, where the company or organization might already have an idea of the solution they think they need or have a list of requirements at the ready. It is critical for project-based learning that the outcomes of the project are not predetermined (Blumenfeld et al. 1991). The coaches prepare the problems together with the industry professionals and to make sure that the project enables deepening of student’s disciplinary knowledge.

Another key aspect for suitable problems is that they require an interdisciplinary team. This leads us often to either look for novel business opportunities or to wicked problems, in which no one can solve the problem alone. Understanding the problem behind the problem, the need of the client, and the development process to build a viable solution all require different types of expertise (Saavedra and Opfer 2012). A student team owns the rights to their solution after the LAB and have the ability and receives support to create a business based on the idea if they so wish, which can be highly engaging for entrepreneurially minded students.

With respect to the interests of the participating companies, this practice strikes a balance by both bringing partners to the LABs and allowing the solution to take shape rather freely. The value for a company in participating is the ability to influence the studies, look for new talent or new business opportunities. In cooperation with the student team, the partners can act as guides in the industry, as sources of information and provide access for user testing with end users. Companies who recognise the problem are also potentially the first customers for the solution and can provide valuable feedback for the student team. Partners who work closely with LABs get a chance to see the talent in the students and by offering problems also affect the content of the instruction in the LAB.

This practice naturally puts requirements to the coaches to be responsive to student needs during the LAB and also before the LAB starts in order to look for the problems in their networks. The IP rights agreement, the open doors policy and public nature of pitching sessions mean that some projects are not suitable for LABs. Overall, this practice is a benefit and an important cornerstone of running Oamk LABs since it enables new business opportunities, which may have initial demand in the market.

Practice: Project proposal presentations and selection, Gate 2

The Gate 2 event and pitch presentations are held at the end of the concept creation, LEAD-phase. The event is public and open to everyone. This is a key practice in bringing the competitiveness to the LAB and builds on the industry connection by having a panel of professionals in the jury, often from companies, industry associations and public organizations. A jury of outsiders is needed so we can get an unbiased view on projects, because at this point LAB Masters and coaches have been working with the teams for weeks and benefit from outside perspectives on the projects. Having new people listening to the presentations also raises the stakes and puts more emphasis on the delivery of the message. Coaches who know the story might fill in the gaps based on previous knowledge whereas fresh eyes and ears spot the inconsistencies. Judging is based on the framing of the problem and context, the business opportunity, viability of the solution and demo plan and the strength of the prototype.

Based on the jury’s feedback, projects are chosen for the LAB phase and the demo development. New team members join teams to create the final project teams. Gate 2 is a stressful event for most students, but creates a strong boost with an important deadline; do a good job or your project is dropped. The Gate 2 presentation should summarize all learning from several weeks of research, development and debate into one presentation. The team members need to work together to pick the right story to tell, find an interesting and compelling way to tell it, select the right person to present and support that person in preparing. This is not always easy and coaches need to facilitate this process in coaching sessions and by running a pre-Gate with presentations and feedback from coaches and peers.

Picture 2: Gate 2 event Spring 2016 was held on campus with high production to show students that their work is valuable and also to show the work to other students.
Picture 2: Gate 2 event Spring 2016 was held on campus with high production to show students that their work is valuable and also to show the work to other students.

The downside with Gate 2 is the potential loss of motivation if one’s’ project does not pass the gate. The jury and coaching feedback needs to be honest and open to offer a chance for reflection. We view this as an important learning moment as well. The project team might have done everything in their power and still get cut due to factors outside of their control. For example, the LAB can only support a certain number of project teams and thus some are cancelled. Similarly, companies have limited resources and some development projects have to be cut despite the great work and promise they may hold. Gates are connected to a practice called Bye old, hello new team in which we reflect on the Gate and show that there is value and things to learn from the projects that did not continue.

Practice: Events as learning opportunities

Event participation can take many forms and provides opportunities both to connect to work-life and to build competences. Students can participate in industry events, like seminars or networking events as a part of the public. Non-formal connections with work-life are emphasised by also organising common events or seminars. All event participation promotes social interaction, networking, non-formal peer-coaching, critique and constructive feedback. Students can also take part in organizing events or volunteering at large events. Some student teams with very promising products can even pitch at startup events already during their studies in LAB. This brings the student team under the same level of scrutiny as the already established companies pitching for the same judges. For example, at the Midnight Pitchfest (2016) in Oulu, Finland one of our student teams was in the top 5 in the general category among over 20 companies. Pitch opportunities create extra goals to boost motivation among students.

Volunteering at events creates opportunities for networking and builds appreciation of the industry. In the spring of 2016, the LAB Master of DevLAB decided to send all of the students to volunteer at a startup pitching event titled Polar Bear Pitching (2016) in Oulu. They helped to build up and tear down the stage area, served food and drinks, drove people and gear from place to place. Through this experience, students reported to have gained more understanding and respect for the various skills and the hard work needed to put on a successful event. They highlighted the need for communication and collaboration during the event and the need for organization and planning. While the time spent at events naturally takes away from advancing the student projects, LAB Masters need to ensure that goals are reached.

Practical considerations for running LABs

Maintaining bridging and alignment

Oamk LABs curricula and cooperation methods are developed together with the recognised stakeholders in LAB focus industries. For guiding the practical development work, Oamk LABs has established two steering groups (SG), one external and one internal. The internal SG is for the development of interdisciplinary and interfaculty practices and curricula within the university. The external SG is for adjusting the model to address industry needs better as well as helping to find suitable problems from the industry. This arrangement of SGs prepares the model to be closely aligned with the needs of the industries and with Oamk internal practices and structures.

Environment for Studios

The premises and location of a studio have an important role in studio model education, and thus require special attention. Based on our experience and according studio model research (Bull et al. 2013, Lee et al. 2015), the environment represents and promotes different ways of learning. The ownership of the premises enhances a feeling of trust and safety among the participants, and helps build the working culture. In addition, the visual representations of the projects are important for professional awareness (Bull et al. 2013) and reflective practice (Schön 1983).

With this in mind, Oamk LABs operates in three different locations; two in the downtown area, one on the university campus. Students, who all have 24 hours a day / 7 days a week access to the space, generate common rules for the premises. Premises include a kitchen area with a chill-out lounge, common spaces for lectures, working spaces for project teams and meeting rooms. Student teams are allowed and encouraged to modify their own space according to their needs. This action has the goal of enhancing the students feeling of control and ownership of the space to allow them to channel their motivation and follow their passion in creating their future. In addition, LABs premises are surrounded by supportive structures for creating new businesses. Usually new startup companies established from the LABs, LAB alumni, stay in close contact with the LABs. These relationships are benefitting from each other as LAB-newbies and alumni can support each other’s learning and product development.

Oulu Game Campus is a practical example of the industry’s interest to collaborate with the Oamk LABs and its ability to respond with the education bridging work-life. During the year 2016, Oulu Game LAB together with Fingersoft and other game companies in Oulu established a game industry pre-incubator initiative and facility in the Oulu City Centre (Kaleva 2016). This new campus brings together students, coaches, startups and more advanced companies, as well as companies giving supportive services for the industry, such as legal, accounting and financing services.

Renewing the role of the teacher

Studio based pedagogy drives renewal of teaching in vocational higher education. The LAB studio model sets new and challenging demands for the role of a teacher as educator, since the traditional teacher-student setup is turned upside down. With inspired, talented, well-connected, interdisciplinary and experienced personnel the learning is enhanced by using multiple methods inside the studio (Oamk LABs 2016). Teachers become more like coaches and consultants advising for the student teams in their projects, guiding learning, stimulating peer-learning and facilitating connections to work-life. Coaching is a new way of teaching and poses challenges to teachers, but is also something unfamiliar to students as well as demonstrated by one student:

”… I totally support this equality between teacher and student cause in my experience the learning effect was higher. Sometimes I wished that the coaches just tell me what was the right thing to do, which decision we should make, what direction we need to go with the project but they just asked question to push ourselves through our individual way. This was frustrating, interesting, annoying, challenging, helpful and very efficient” (Perka 2016).

Because of being full time studies, Oamk LABs give coaches the opportunity to act as a mirror reflecting the professional development of the student by giving constant feedback. Based on program experiences and trials, the suitable size of a LAB student group has been defined as between 30 to 40 students. In our experience the minimum amount of students ensures the forming of a multidimensional LAB community, thus enabling the learning community. On the other hand, the student group should be small enough to create a comfortable environment where students are familiar with each other. The studio education period should also be long enough to provide sufficient time for building a trustful relationship between coaches and students.

Since LABs curricula is designed to be flexible based on the needs of work-life and focuses around the needs of the student project, individual teachers’ traditional lesson plans cannot be utilized. Instead, teaching is principally based on the emergent needs of a student team project, referred to as impromptu teaching. Interdisciplinary teams and different student backgrounds force teachers to be open to new ideas and agile in guiding students. These Oamk LABs working methods challenge teachers to support 21st Century Skills and tap into their T-shaped skills. To succeed, teachers are well connected and have the latest knowledge from their field of expertise.

At Oamk LABs, staff form and operate in an interdisciplinary team of LAB coaches. The teacher’s ability to utilise the team of LAB coaches for needed expertise and introduce new external experts is necessary to advise student projects successfully. The working method also clashes with the traditional way of resourcing and planning teachers work time, since teachers are working as part time and have also other responsibilities outside of LABs. The needed coach might not be available for an impromptu session when it is needed. LAB Masters are responsible for resourcing and must anticipate the needs in projects. Over time the same issues emerge at the same phases of the projects and therefore resourcing can be matched more closely.

Training the LAB coaches for the model is essential to the successful delivery of a studio type of education (Schön 1983; Bull and Whittle 2014). The Oamk LABs staff has been educated for the LSM through a specific training program which includes intensive, practical and theoretical coverage of learning practices in the model. In fact, commonly at the beginning of the training program, coaches experience the concept development components of the LAB as a student. By experiencing the model first, coaches are able to better align their own teaching later on to the needs of a student team and individual students. Overall, teachers in studios need to be living according the values and act as future professional role models. Interestingly, the majority of the teachers participating in LABs have entrepreneurial or private sector background, which provides them with a strong understanding about business.

Discussion and future developments

So far studio based education has been utilised mainly in creative disciplines, such as architecture, design and arts for bridging academic and work-life practices. However, the nature of problems that future professionals are facing demands developing skills such as creativity and collaboration, – 21st Century Skills. This suggests why interest towards studio based pedagogy has increased in recent years among other areas of professional education (Heikkinen et. al. 2016). The studio based environment encourages the learning of work life skills in a climate that tolerates failure, which is essential before moving into work life. Project and problem based learning with methods using reflection are also widely used in studios. While current studio education typically includes students from only one discipline, the experience from the Oamk LABs studio environment calls for including students and teachers from different areas of expertise.

Based on experience from Oamk LABs, studio pedagogy can be highly demanding for students and teachers. The environment at LABs may be confusing for students because of the working methods and the interdisciplinary, international and intergenerational group of students. Communication between the different professions in a language that might not be your native language is challenging. Often extra effort is needed to make yourself and your ideas understood. Many of the students are undertaking concept development for the first time in their life and LABs offer a safe environment to make their first real designs for real problems provided by real customers. More advanced students provide an opportunity for Master-Apprentice-type learning since they can act as role models for younger students. After the ‘cultural shock’ at the beginning of the program, students recover and start to perform in a company-like environment as young professionals and eventually gain new knowledge for the task at hand.

The Oamk LABs future development continues through trials and evidence based development of methods. When the LSM is applied to other industries and countries and more degree programs are involved, the growth sets increasing challenges for the model definition, and external and internal communications as well. The Oamk LABs were created and continue to be developed through agile methods to be a dynamic education program with substantial freedom of operation to address changing needs of the industries and society at large. Creating interdisciplinary programs in higher education requires courage and a willingness for cooperation from within the different degree programs and a common recognized need, which can be formed only through co-creation and discussion. External pull for new types of expertise or a crisis can jumpstart the development of these new forms teaching and learning.

Oamk LABs enables learning of 21st Century Skills in higher education by educating self-directed learners who are active and concerned citizens. They are persons with an opportunity mindset and the confidence and tools for co-creation of innovations. The LAB studio model includes several additional components compared to many of the existing models of studio based learning. Since it is designed to be international, interdisciplinary, intergenerational and industry focused, it brings new opportunities for learning 21th Century Skills. In our opinion, bridging work-life and higher education happens through the renewal of teaching and teachers should act as role models for the new skills required. Oamk LABs is a dynamic and open environment which offers a platform to renew teaching practices and invites all participants to learn and develop together.


Janne Karjalainen, Oulu University of Applied Sciences, M.Sc. (Tech.), Lecturer, LAB Master, janne.karjalainen(at)oamk.fi
Ulla-Maija Seppänen, Oulu University of Applied Sciences, M.Sc.(Health, Occupational Therapy), Senior Lecturer, LAB Master, ulla-maija.seppanen(at)oamk.fi
Kari-Pekka Heikkinen, Oulu University of Applied Sciences, M.Sc. (Tech.), Senior Lecturer, Creator of Creations, kari-pekka.heikkinen(at)oamk.fi

Ananiadou, K. and  Claro, M. 2009. 21st Century Skills and competences for new millennium learners in OECD countries. OECD Education Working Papers. 2009 (41), 33.

Ashcraft, K. L. 2011. Knowing work through the communication of difference. Reframing difference in organizational communication studies: Research, pedagogy and practice, 3-30.

Binkley, M., Erstad, O., Herman, J., Raizen, S., Ripley, M., Miller-Ricci, M., and Rumble, M. 2012. Defining twenty-first century skills. In P. Griffin, B. McGaw, and E. Care (Eds.), Assessment and teaching of 21st century skills (pp. 17-66). Netherlands: Springer.

Blumenfeld, P., Soloway, E., Marx, R., Krajcik J., Guzdial, M. and Palincsar, A. 1991. Motivating Project-Based Learning: Sustaining the Doing, Supporting the Learning. Educational Psychologist, 1991, Vol. 26, No. 3&4, 369-398.

Boreham, N. C., and Lammont, N. 2000. The need for competences due to the increasing use of information and communication technologies. Luxembourg: CEDEFOP

Boud, D., Cohen, R., and Sampson, J. 1999. Peer learning and assessment. Assessment and Evaluation in Higher Education, 24(4), 413­426.

Boud, D., Cohen, R., and Sampson, J. (Eds.). 2014. Peer learning in higher education: Learning from and with each other. Routledge.

Boyer, E. L., and Mitgang, L. D. 1996. Building Community: A New Future for Architecture Education and Practice. A Special Report. (p. 184). Princeton, NJ: The Carnegie Foundation for the Advancement of Teaching.

Brown, A. L., and Campione, J. C. 1994. Guided discovery in a community of learners. The MIT Press.

Brown, T. 2008. Design thinking. Harvard business review, 86(6), 84.

Buchanan, R. 1992. Wicked Problems in Design Thinking. Design Issues, 8(2), 5-21. doi:1. Retrieved from http://www.jstor.org/stable/1511637doi:1

Burkhardt, G., Monsour, M., Valdez, G., Gunn, C., Dawson, M., Lemke, C. and Martin, C. (n.d.). 2003. EnGauge 21st Century Skills – San Diego State University. Retrieved July 6, 2016, from http://pict.sdsu.edu/engauge21st.pdf

Bull, C. N., Whittle, J., and Cruickshank, L. 2013. Studios in software engineering education: Towards an evaluable model. In 2013 35th International Conference on Software Engineering (ICSE) (pp. 1063–1072). IEEE.

Bull, C. N., and Whittle, J. 2014. Supporting reflective practice in software engineering education through a studio-based approach. IEEE software, (4), 44-50.

Burroughs, S., Brocato, K., and Franz, D. 2009. Problem based and studio based learning: Approaches to promoting reform thinking among Teacher candidate. National Forum of Teacher …, 19(3), 1–15.

Capra, F. 2007. Foreword. In A. E. J. Wals (Ed.), Social learning. Towards a sustainable world. Wageningen: Wageningen Academic Publishers.

Carnell, E., MacDonald, J., and Askew, S. 2006. Coaching and Mentoring in Higher Education: A Learning ­Centred Approach. Institute of Education­-London.

Carter, A. S., and Hundhausen, C. D. 2011. A review of studio-based learning in computer science. Journal of Computing Sciences in Colleges, 27(1), 105–111.

Cohen, E., and Lloyd, S. 2014. Disciplinary evolution and the rise of the transdiscipline. Informing Science: the International Journal of an Emerging Transdiscipline, 17,189-215.

Dede, C, 2009. Comparing Frameworks for “21st Century Skills”. Harvard Graduate School of Education. Retrieved July 6, 2016, from http://citeseerx.ist.psu.edu/viewdoc/download?doi=

Dewey, J., and Small, A. W. 1897. My pedagogic creed (No. 25). EL Kellogg & Company.

Dierdorff, E.C. and Rubin, R.S. 2015. We’re Not Very Self-Aware, Especially at Work. Harvard Business Review. https://hbr.org/2015/03/research-were-not-very-self-aware-especially-at-work

Dumont, H., and Istance, D. 2010. Analysing and designing learning environments for the 21st century. In H. Dumont, D. Istance, & F. Benavides (Eds), The nature of learning. Using research to inspire practice (pp. 19-32). Paris: OECD Publishing.

Dweck, C. 2009. Who will the 21st-century learners be?. Knowledge Quest, 38(2), 8-10.

Engeström, Y., Engeström, R. and Kärkkäinen, M. 1995. Polycontextuality and boundary crossing in expert cognition: Learning and problem solving in complex work activities. Learning and Instruction, 5(4), 319-336.

ECIE. 2016. European Conference on Innovation and Entrepreneurship. Web page: www.academic-conferences.org/conferences/ecie/

Finkbeiner, M., Schau, E. M., Lehmann, A., and Traverso, M. 2010. Towards life cycle sustainability assessment. Sustainability, 2(10), 3309-3322.

Halpern, D. F. 2003. Thought and knowledge: An introduction to critical thinking. Mahwah, NJ: Erlbaum.

Hamdi, S., Silong, A.D., Omar, Z.B. and Rasid R.M. 2016. Impact of T-shaped skill and top management support on innovation speed; the moderating role of technology uncertainty.

Cogent Business & Management

Vol. 3, Iss. 1. http://www.tandfonline.com/doi/pdf/10.1080/23311975.2016.1153768

Heikkinen, K-P. 2014. LAB Learning Model Handbook, Description of the LAB Learning Model and Planning. Oulu University of Applied Sciences internal document. Oulu.

Heikkinen, K.-P., Seppänen, U.-M. and Isokangas J. 2015. LAB studio model: Developing external networks for learning entrepreneurship in higher education. Education in the North, 22(Special Issue), pp.49-73.

Heikkinen K-P., Seppänen U-M. and Isokangas J. 2016. Entrepreneurship Education in Studio Based Learning Practices. Conference proceedings. 11th European Conference on Innovation and Entrepreneurship, Jyväskylä, Finland. In press.

Heikkinen, K-P. and Stevenson, B. 2016. ‘The LAB studio model: enhancing entrepreneurship skills in higher education’, Int. J. Innovation and Learning, Vol. 20, No. 2, pp.154–168.

IfM and IBM. 2008. Succeeding Through Service Innovation: A Service Perspective for Education, Research, Business, and Government (University of Cambridge Institute for Manufacturing, Cambridge, UK).

Ikeda, D. 2005. Foreword. In N. Noddings (ed.). Educating Citizens for Global Awareness. Teachers College Press. New York.

Kaleva. 2016. [News on the local newspaper, Kaleva]. Oulu Game LAB mukaan Oulun pelikampukselle. [Oulu Game LAB joins City of Oulu Game Campus].


Karjalainen, J. 2016. Design thinking in teaching: product concept creation in the DevLAB program. Conference proceedings. 11th European Conference on Innovation and Entrepreneurship, Jyväskylä, Finland. In press.

Kelley, T and Kelley, D. 2013. Creative Confidence: Unleashing the Creative Potential Within Us All. Crown Business, New York.

Kuhn, S. 1998. The software design studio: An exploration. Software, IEEE, 15(April), 65–71.

Kuhn, S. 2001. Learning from the architecture studio: Implications for project­-based pedagogy. International Journal of Engineering Education, 17(4&5), 349–352. Retrieved from http://www.ijee.ie/articles/Vol17­4and5/Ijee1214.pdf

Lee, J., Kotonya, G., Whittle, J. and Bull, C. 2015. Software Design Studio: A Practical Example. Proceedings of the 37th International Conference on Software Engineering, Vol 2, pp 389-397.

Litendahl, M. 2015. Fysioterapiaopiskelijan Asiantuntijuuden Kehittyminen LAB Studiomallisessa Oppimisessa. [Physiotherapy student ́s professional expertise development in LAB Studio Model Education]. Oulu University of Applied Sciences. Theseus.  Web. 13 July 2016.   http://urn.fi/URN:NBN:fi:amk-2015060211813

Mulcahy, C.M. 2008. Chapter 1: The Tahgled Web We Weave – Critical Literacy and Critical Thinking. In L. Wallowitz (ed.). Critical Literacy as Resistance. Teaching for Social Justice Across the Secondary Curriculum. Peter Lang Publishing Inc. New York.

Nonaka, I., and Takeuchi, H. 1995. The Knowledge­ Creating Company: How Japanese companies create the dynamics of innovation. Oxford university press.

Oamk LABs. 2016. Oamk LABs web page. Web page: http://www.oamklabs.fi/our-crew.

Oamk LAB’s Yearly Statistics. 2016. Oulu University of Applied Sciences (Oamk), Internal document.

P21 Common Core Toolkit A Guide to Aligning the Common Core State Standards with the Framework for 21st Century Skills [PDF]. 2011. Partnership for 21st century skills.


Pakman, M. 2000. Thematic Foreword : Reflective Practices : The Legacy Of Donald Schön. Cybernetics & Human Knowing, 7(2­3), 5–8.

Perka, C. 2016. THE INFLUENCE OF SOCIAL WORK IN DEVELOPING AN INFORMATION AND COMMUNICATION TECHNOLOGY – using the example of the Project TILIA – Parent Support Application. St. Pölten University of Applied Sciences in cooperation with Oulu University of Applied Sciences. Final Thesis. Social Work.

Polar Bear Pitching. 2016. http://polarbearpitching.com

Ritchhart, R. 2002. Intellectual character: What it is, why it matters, and how to get it. John Wiley & Sons.

Rogoff, B., Matusov, E., and White, C. 1996. Models of teaching and learning: Participation in a community of learners. The handbook of education and human development, 388­414.

Saavedra, A. and  Opfer, V. 2012. Learning 21st-century skills. Phi Delta Kappan. Vol: 94 (2) pp: 8-13.

Sawyer, R. K. 2004. Creative teaching: Collaborative discussion as disciplined improvisation. Educational researcher, 33(2), 12­20.

Schön, D. 1983. The Reflective Practioner. How Professionals Think In Action. (p. 374). Basic Books.

Schön, D. 1985. The design studio: An exploration of its traditions and potentials. Intl. Specialized Book Service Inc.

Schön, D. 1987. Educating the Reflective Practioner (1. ed., p. 355). San Francisco: Jossey­Bass Inc.

Teitelbaum, K. 2011. Critical Civic Literacy in Schools: Adolescents Seeking to Understand and Improve The(ir) World. In J.L. DeVitis (ed.). Critical Civic Literacy – A Reader. Peter Lang Publishing Inc. New York.

Timmons, J. A., and Spinelli, S. 1994. New venture creation: Entrepreneurship for the 21st century (Vol. 4). Burr Ridge, IL: Irwin.

Toner, P. 2011. Workforce skills and innovation: an overview of major themes in the literature. OECD Directorate for Science, Technology and Industry (STI). Centre for Educational Research and Innovation (CERI). https://search.oecd.org/innovation/inno/46970941.pdf

Tynjälä, P. 1999. Towards expert knowledge? A comparison between a constructivist and a traditional learning environment in the university. International Journal of Educational Research, 31(5), 357-442.

Midnight Pitchfest. 2016. World’s Northernmost Startup Event. Web page: http://www.pitchfestoulu.com/

Yip, K. 2006. Self-reflection in reflective practice: A note of caution. British Journal of Social Work, 36, pp 777-788.

‘Do I Have It in Me to Be an Entrepreneur?’ – Entrepreneurial Coaching for Master Level Students


Entrepreneurship education has been high on the European agenda for many years as an effective mean of embedding an entrepreneurial culture in higher education institutions (HEI). Higher education has not traditionally prepared students for self-employment as HEIs’ primary mission has been to prepare students for employment (Fenton & Barry, 2014). Higher education is facing challenges in the definition of its purpose, role, and scope in society and the economy, and therefore universities have been recommended to expand their entrepreneurship education (OECD, 2012). Entrepreneurship education has evolved considerably in recent decades and it has gained both academic and political credibility (Henry, 2013).

Entrepreneurship education in higher education has shown to have a positive impact on the entrepreneurial mindset of students, their intention towards entrepreneurship, their employability and finally on their role in the society and the economy (European Commission 2012). At the global level entrepreneurship education is portrayed as critical to employment generation, innovation and economic growth and, therefore, it is promoted as a necessary core rather than an optional peripheral aspect of higher education curricula (Henry, 2013). The expectations for entrepreneurship education are high and e.g. Henry (2013) suggests that policy makers’ expectations may even have spiralled beyond what is both realistic and possible.

The entrepreneurial intentions of students at Finnish Universities of Applied Sciences (UAS) and in secondary education have been studied in a longitudinal research (Joensuu et al. 2014). In that study it was found that the entrepreneurial intentions of UAS students decrease during their studies. One reason for this seems to be that at the beginning of the studies students have more positive attitudes towards entrepreneurship as the time to actually make the decision to start a business after graduation seems to be far in the future. As they near graduation, their opinions towards entrepreneurship become more realistic and cautious. Furthermore, it was found that taking general entrepreneurship studies does not have an effect on entrepreneurial intention. However, entrepreneurial pedagogy requiring active participation of the students has a positive effect on the students’ confidence in their entrepreneurial capabilities and this in turn has a positive effect on entrepreneurial intentions (Joensuu et al. 2014).

A relevant policy-oriented question whether it would make more sense for a certain group of students to take more comprehensive entrepreneurship education rather than all students taking only basic entrepreneurship education has been raised (Søren, 2014). Entrepreneurship-specific education may provide students with an opportunity to accumulate transferable skills that can be employed in any organizational context, not only in business start-ups (Solesvik, Westhead, Matlay & Parsyak, 2013). This view supports the idea of offering entrepreneurship education widely in HEIs. On the other hand, if we think that entrepreneurship education should enhance students’ business start-ups, we should give more specific coaching for those students who already have entrepreneurial intention. As Fenton and Barry (2014) state, it is a fallacy to assume that more entrepreneurship education provision will lead to immediate graduate entrepreneurship as the route to self-employment is influenced by personal circumstances.

Another critical question raised within entrepreneurship education research is what we are really doing when we provide teaching and training in entrepreneurship. According to Fayolle (2015), we should think more critically about the appropriateness, relevance, coherence, social usefulness and efficiency of practices in entrepreneurship education. Entrepreneurship education is at the crossroads of entrepreneurship and education and, therefore, it should have a solid theoretical and conceptual foundation drawing from these both fields.

Keeping these two relevant and critical questions in mind, in this paper’s theoretical background the theoretical foundation behind our decision to concentrate on students with entrepreneurial intention is described firstly. Secondly, the educational foundation for our entrepreneurial coaching model is discussed.

Terms Related to Entrepreneurial Coaching

In research and political reports terms entrepreneurship education, enterprise education and entrepreneurial education seem to be used as related terms. However,  these terms are slightly different and e.g. UK’s Quality Assurance Agency for Higher Education QAA (2012) has defined enterprise education as follows: ’Enterprise education aims to produce graduates with the mindset and skills to come up with original ideas in response to identified needs and shortfalls, and the ability to act on them. In short, having an idea and making it happen’. Whereas entrepreneurship education ‘focuses on the development and application of an enterprising mindset and skills in the specific contexts of setting up a new venture, developing and growing an existing business, or designing an entrepreneurial organisation.’ (QAA, 2012, 8). The ultimate goal of enterprise and entrepreneurship education is to develop entrepreneurial effectiveness which can be defined as ‘the ability to behave in enterprising and entrepreneurial ways. This is achieved through the development of enhanced awareness, mindset and capabilities to enable learners to perform effectively in taking up opportunities and achieving desired results’ (QAA, 2012, 10-11).

This study describes one model of entrepreneurship education called entrepreneurial coaching which is offered to master level students at Savonia University of Applied Sciences. In this study the term entrepreneurship education is used when discussing entrepreneurial, enterprise and entrepreneurship education in general, and when discussing the entrepreneurship education model of our university the term entrepreneurial coaching is used. Coaching as a term describes well our model which has a personalized approach focusing not only on the business idea but on the student as an individual. This model creates a context of learning that equips the students to find answers themselves through a creative process. The coach plays the role of a facilitator or catalyst but does not provide ready-made answers (see e.g. Audet & Couteret, 2012; International Coaching Federation, 2016).

Objectives, Approach and Methods

This study describes the foundations, model and methods of entrepreneurial coaching which is offered to the master level students of Savonia University of Applied Sciences. The students’ expectations for the coaching and how they utilize it to develop their business ideas are examined. An earlier version of this paper was presented in the RENT-conference in Zagreb, Croatia in November 2015 (Laukkanen & Iire, 2015).

In this study the students and their views are placed into focus, and it is examined how entrepreneurial coaching may enhance their personal development as entrepreneurs. Our entrepreneurial coaching model is presented as one way to enhance master level students’ capabilities and courage to start and develop their own businesses. The aim of the paper is to strengthen the entrepreneurship education research by analysing openly the educational foundations of our entrepreneurial coaching model. As Jones et al. (2014) state,  in order to promote the development of entrepreneurship education it is important that the educators ‘reflect upon their practice, identify their teaching orientation and question their emphasis upon certain contents, processes and outcomes’ (Jones et al. 2014, 773).

This study adopted a qualitative research approach and a theme-based survey was conducted among 17 students who participated in entrepreneurial coaching. This data was used to describe the expectations of the students and the ways they utilize the coaching to develop their business ideas. We also arranged a kick-off seminar for these students and there we discussed their expectations and challenges concerning entrepreneurship. These discussions gave more depth to the themes which rose from the survey.

Furthermore, a more detailed look was taken into the coaching processes of four students with very different starting points, and short case stories of these students are told. Two of the students develop together a business idea which is based on their new product and service innovation. The third student is already an entrepreneur, but his business lacks all formal business planning, business model and formal strategy. The fourth student has a business idea based on her knowledge and skills which have developed during her long working experience. By these case stories it is depicted how this kind of flexible entrepreneurial coaching model can benefit students in their personal circumstances. These particular students were chosen as they have so different starting points.

Entrepreneurial Coaching Model – to Whom, What, How and Why?

In this chapter two critical perspectives related to whom and how entrepreneurship education should be implemented are discussed. Firstly, the theoretical foundation behind our decision to concentrate on master students with entrepreneurial intention is described. Secondly, the educational foundation of our entrepreneurial coaching model is discussed.

Entrepreneurship Education and Coaching for All or Only for Those with Entrepreneurial Intention

In entrepreneurship education research there is a lot of discussion around the question whether it would make more sense in higher education institutes to offer some students more comprehensive entrepreneurship education rather than some entrepreneurship education for a large group of students or even all students. The view which supports offering entrepreneurship education widely in HEIs states that  entrepreneurship-specific education may provide students with an opportunity to accumulate transferable skills that can be employed in any organizational context, not only in business start-ups (Solesvik et al., 2013). Entrepreneurship-specific education has stated to accumulate the human capital assets required for entrepreneurial careers in new, established, small, large, public and private organizations (Solesvik, Westhead & Matlay, 2014).

Entrepreneurship education is booming worldwide, and entrepreneurship is becoming increasingly popular in business schools, engineering schools, universities and educational institutions (Fayolle, 2015). European Commission has adopted a very wide description of EE in a recent report saying that entrepreneurship education is taken to cover all educational activities that seek to prepare people to be responsible, enterprising individuals who have the skills, knowledge and attitudes needed to prepare themselves to achieve the goals they set for themselves to live a fulfilled life (European Commission, 2015). Offering entrepreneurship education widely in educational institutions has an important role producing skills to future entrepreneurs so that they are capable of thinking, acting and making decisions in a wide range of situations and contexts (Fayolle, 2015).

On the other hand, if we think that entrepreneurship education should enhance students’ business start-ups, it demands more specific education and coaching for those students who already have entrepreneurial intentions. Donellon et al. (2014) argue that while demand for entrepreneurial competence has led to constant growth of entrepreneurship education, few programmes provide robust outcomes such as actual new ventures or entrepreneurial behaviour in real contexts. They emphasize that beyond acquiring knowledge and skills, entrepreneurial learning also involves the development of an entrepreneurial identity (Donellon, Ollila & Williams Middleton, 2014). Furthermore, the route to self-employment is highly influenced by personal circumstances (Fenton & Barry, 2014).

There seems to be a gap between entrepreneurial intention and action (Van Gelderen, Kautonen & Fink, 2015; Gielnik et al., 2014). Many people form intentions to start their own businesses but do little to translate those intentions into action. Acting upon intentions may be postponed or abandoned for several reasons; new constraints emerge, a person’s preferences change, or feelings of fear, doubt or aversion rise. Van Gelderen et al. (2015) show that self-control positively moderates the relationship between intention and action. It seems that supporting only the development of entrepreneurial knowledge does not necessarily lead to action, whereas factors of entrepreneurial goal intentions, positive fantasies, and action planning have combined effects on new venture creation (Gielnik et al. 2014).

At our university entrepreneurship is considered an important thing to promote since we see it as one way to develop the economy and well-being of the region. Therefore, at our business school we offer all students general entrepreneurial skills which are useful in all organizational contexts and may lead to business start-ups in future. All bachelor level business students get general knowledge and skills of entrepreneurship since these issues are taught in academic courses. They all also practice entrepreneurship skills during their first year in a virtual enterprise which they establish in teams of ten students. After this, all business students also at the bachelor’s level have an opportunity to choose entrepreneurial coaching courses if they have a preliminary business idea and/or entrepreneurial intentions.

The master’s level entrepreneurial studies are aimed at those students who already have entrepreneurial intentions. They choose these studies knowing that the goal is to develop their own business ideas and business models. We have named these studies entrepreneurial coaching to separate them from more general entrepreneurship education. In addition, we think that the term ‘coaching’ describes  our model very well as coaching discussions are an essential part of the process. These entrepreneurial coaching studies are offered also to students from other fields than only business. At the master’s level we have had students from the business, tourism, engineering and healthcare sectors. Several previous studies have also emphasized that entrepreneurship education should move beyond the traditional business school context and offer entrepreneurial learning pathways also to students from other faculties or schools (Jones, Matlay and Maritz, 2012; Crayford et al. 2012).

Educational Foundation for Entrepreneurial Coaching

Fayolle (2015) emphasizes that entrepreneurship education should have a strong intellectual and conceptual founding drawing from the fields of entrepreneurship and education. Similarly Jones et al. (2014) call for stronger pedagogical content knowledge for entrepreneurship education. In his article Fayolle (2013) presents a good generic teaching model for entrepreneurship education. In this paper his model is used as a basis to give a comprehensive description of the educational founding for our entrepreneurial coaching (figure 1).

Figure 1. Educational model of entrepreneurial coaching
Figure 1. Educational model of entrepreneurial coaching

The entrepreneurial coaching studies for master’s level students at our university consist of three courses (5 ECTS each). Students can include these studies in their curricula as elective studies, and they can choose one, two or three of these courses. In the following the studies are described in more detail.

For whom?
The students are studying at Savonia University of Applied Sciences in order to get a master’s level degree. They already have a bachelor’s level degree and at least three years of working experience after completing the bachelor’s degree. They have preliminary business ideas, and/or entrepreneurial intentions. The students’ reasons for participating in these studies vary. Some of them already have quite clear business ideas which they want to develop into solid business models. Some students have the entrepreneurial intentions, but not any clear business ideas. Some of them are already entrepreneurs, but they feel that their business ideas and models need to be clarified.

One clear objective for offering these studies is to increase the number of master’s level students’ business start-ups. However, achieving this goal takes time and the actual starting up may happen years after completing the degree. Another important goal is to give master students an opportunity to take time to ponder their entrepreneurial and personal goals and find versatile information about the industry, markets, competition, etc. which helps them to make decisions.

We also tell our students that these studies give them an opportunity to gather information to make the right decision whether to proceed with the business idea towards a start-up, or to postpone or abandon the commercial use of the idea. This is an ethical issue; we should also help the students to make a no-go decision if, after wide and versatile information gathering and analysis, it seems that the business idea has no commercial potential.

In our entrepreneurial coaching model we mix theoretical knowledge and practice-oriented approaches. The theoretical knowledge contains issues such as opportunity recognition, business model generation, business environment analysis and entrepreneurial skills. These issues are discussed in a kick-off workshop and in on-line materials. The students are expected to find more information about these issues focusing on their own business ideas. Otherwise the studies are very practice-oriented as the students work on their own ideas. The students’ information gathering and individual pondering is supported by coaching discussions when needed.

The coaching teachers also have skills that mix theoretical and practical knowledge. There are two ‘main coaches’, one of them has a doctoral degree in entrepreneurship and has been an entrepreneur herself, the other has a master’s degree in administrative sciences and a long and profound experience in developing business models in organizations. In addition, other professionals at our university can be employed as coaches when their special knowledge is needed (for example innovation management or financial management issues).

The entrepreneurial coaching process starts with a kick-off workshop for the whole group. In this workshop the students are offered short lectures on essential entrepreneurship knowledge. After that the students brainstorm and jointly develop the ideas. They also study how to use business model generation tools.

After that the students start to work on their own business ideas independently and the development process is supported during coaching sessions with the teachers. The coaching teachers also provide ideas on how the students should and could develop the needed network. An on-line learning environment is formed to contribute to the learning process. In the learning environment the students find relevant material, links and they can also ask the coaches questions. The students report on their learning by producing written learning assignments.

The studies consist of three separate courses, and a student can choose only one or two, or all three of them. These three courses have different learning objectives. In the first course the students ponder their own entrepreneurial intentions and skills and form the first business model around their business ideas. In this phase the students critically analyse their own entrepreneurial motivation and skills. The students are advised to enhance their self-reflection with tests which measure entrepreneurial intentions and capabilities.

In the second course they choose and justify one specific part of their business model which needs further studying and gather information related to this. And finally in the third course the students should be able to present holistic and profound business models and plans to show how they are going to turn their ideas into business. At this stage the students should form action plans on how their entrepreneurial intentions will translate into action (see e.g. Van Gelderen et al. 2015). At all stages the students are expected to gather versatile theoretical and practical information.

For which results?
The students develop their business ideas and models and they report on the development processes in the learning assignments. These assignments are evaluated and the students get their grades on the basis of the evaluation criteria which include e.g. the following: setting and achieving the goals of the process, use of versatile and profound knowledge base (theoretical and practical), usefulness of the gained information, versatile and professional discussion and reporting and logical conclusions. The students also get feedback which helps them to move forward in the development of their business models.

We assess the entrepreneurship outcomes of the coaching by following the number of students who participate, the start-ups of the students and new business models developed for the existing firms of the students. However, it is difficult to report on these assessments yet since the processes of the students are long and the actual results often come about later.

Students’ Experiences of Entrepreneurial Coaching

As mentioned, master students’ reasons for participating in entrepreneurial studies vary. In a survey among the students their motives to participate were asked, and we also discussed these motives during a kick-off workshop and coaching discussions. Some of the students have strong entrepreneurial intentions and quite clear business ideas, while some have the intention, but the business idea is still very vague. There are also students who have clear business ideas, but they want to take time to ponder how they could match entrepreneurship with their personal circumstances. And finally, there are students who already are entrepreneurs, but whose business ideas and models need to be clarified. Therefore a flexible coaching model is good for master students as it takes into account the students’ personal circumstances. Here are some citations to describe these different motives:

My goal is to explore profoundly if my business idea has real potential and if I have it in me to be a successful entrepreneur.

I want to attain more knowledge about entrepreneurship. On the other hand, these studies ‘force’ me to reflect my entrepreneurial skills and explore the potential of my business idea.

I want to clarify our firm’s business model. We haven’t done what we should have done at the beginning stage of the firm… Now it is a good time to clarify these essential aspects of our business.

We have students from different sectors; business, tourism, engineering and health care. This gives us a challenge as the students have different educational backgrounds. Business and tourism students already have quite strong general business and entrepreneurship knowledge, whereas engineers and students with health care degrees have studied these subjects much less. Therefore, some of the students expected to have more lectures on general business themes such as forms of enterprise and financial issues.

The execution of the studies is good. However, I expected to get more general business information – I mean basic things about issues which entrepreneurs face when they start a business. Having an opportunity for coaching discussions is great.

The participating students have found it important to get the opportunity and support to develop their business ideas as part of their studies. This seems to be one good way to promote the business start-ups of graduates as well as to enhance the chances of success of their businesses. As Fenton and Barry (2014) also found, entrepreneurial coaching at the graduate level provides a welcome ‘breathing space’ to develop students’ business ideas.

I find entrepreneurial coaching very useful for me. It is great that I have this opportunity to explore the potential of my idea as a part of my studies.

It is extremely important to get support for developing my business idea and get more knowledge from entrepreneurship experts.

The best way to describe the versatile motives, situations and processes of the students might be to tell short case stories. Therefore the stories of four students are told here: Helen and Sarah (innovation based idea), John (existing firm with no formal business model), and Mary (knowledge based idea). The names of the students are changed to ensure their anonymity. The processes of these students are still going on, and therefore the final outcomes and decisions which they will make concerning their business ideas cannot yet be told. These stories describe their entrepreneurial processes so far.

Helen and Sarah are master students from two different fields; Sarah is a business student and Helen is a healthcare management student. They met in an innovation knowledge course where they worked in the same study team and developed Helen’s original innovation idea which is a mobile phone application for persons with a certain type of food allergy. During the first course of entrepreneurial coaching they defined the customer segments for their application, analysed competition and formed their first business model draft. Helen and Sarah concluded in their report that they now have a preliminary understanding of the earning logic of their business. However, they now need a more profound market survey, and they need to plan and design the application. They are planning to focus on these aspects in their second and third entrepreneurial coaching courses and utilize the know-how of our university’s other departments (technology and design management).

John’s friends established a new firm in 2012 after recognizing a new import business opportunity. John started working for the company in autumn 2012 and bought his share of stocks in spring 2013. All three key persons had a technical education and background. Due to the strong demand, the business was good and the customers were found quite easily. The whole company adopted a culture of busy doing; there was no role for planning and foreseeing. John began to think about the future in the longer run. He started his master level business studies and soon realised that there is a huge need in their company to both increase efficiency and plan a proper business strategy for long term success. John took the entrepreneurial coaching studies because of the proper opportunity to take time to think about his own skills as an entrepreneur and also plan his business further. He is preparing the business model for their company. He thinks that the support from the tutoring professionals (coaching teachers) and the opportunity to think and plan by himself and reflect the results with the fellow students and tutors are the main reasons to participate in the entrepreneurial coaching studies.

Mary has a profound professional background as a controller, and she had an idea of starting her own business which would offer controlling and financial management services to entrepreneurs who lack these skills (firms which have been established leaning on the entrepreneurs’ professions). She developed the business model through versatile information gathering from both theory and practice. The practical information was gathered from managers in different sectors, and she also offered these services to one small company in the health care sector and tested the service there as a pilot case. During this process Mary found that there would be actual demand for her service business. However, she started to feel that this business would be too similar to the work she had done as an employee for a long time. Her interest started to focus more on the health care sector during her pilot process, and she now looks for new business opportunities in that sector. She also wants to be a part of a team instead of working as a consultant for a one- woman firm.

By telling these three case stories it is shown how different the starting points of students can be. Therefore we cannot offer some kind of one-size-fits-all solutions in entrepreneurial coaching. Instead, we need to appreciate the personal goals of the participants.

Conclusions and Implications

This study provides guiding principles for good practices in entrepreneurial coaching in higher education, and especially in practice-oriented universities such as universities of applied sciences. The findings of this study show that there is a need for a flexible entrepreneurial coaching model for master level students. On the basis of our experiences it can be said that entrepreneurial coaching should be student focused taking personal circumstances into account. Furthermore, the entrepreneurial studies should be compatible with the students’ curricula. This means that the curriculum is flexible enough and these entrepreneurial coaching studies can be included into the students’ personal study plans.

Using versatile learning methods seems to be good for developing entrepreneurial skills. A kick-off workshop where students become familiar with the business model development combined with e-learning environment and on-line material gives basis for the work which the students do independently. The students’ independent learning is supported in coaching discussions.

During this process the students also reflect and develop their own entrepreneurial identity. As Donellon et al. (2014) argue; if the educational objective is learning for the practice of entrepreneurship, then entrepreneurial identity construction is as important a goal as the development of knowledge and skills. The students are encouraged to critically evaluate their own skills and life goals and reflect them to attributes related to successful entrepreneurship. Context is an important contributor to entrepreneurial identity and the students need to confront their own internal dialogue about how the entrepreneurial identity fits with their social groups’ expectations and their own life expectations. We encourage our students to do this kind of reflection as part of their learning assignments.

Through the entrepreneurial coaching process master level students enforce their capabilities to develop their business ideas and business models. The process also enhances their courage to take their first steps (or new direction) as entrepreneurs. The students of our entrepreneurial coaching seem to have gained similar kind of immediate value as Kirkwood et al. (2014) also reported: confidence, entrepreneurship knowledge and skills, a sense of reality and practical solutions (Kirkwood, Dwyer and Gray, 2014). The coaching process forces the students to gather versatile information related to the planned business model. Therefore they will form stronger confidence in their skills. This and the coaching discussions enhance the courage to take the needed steps.

The entrepreneurial coaching process is an important learning experience also for those students who, after profound information gathering, decide to postpone or abandon the commercial use of their ideas. The process has offered them experimental learning opportunity which may in future give them better skills to recognize and analyse potential business opportunities, and gather versatile information to form solid business models.

This study contributes to entrepreneurship education research by presenting one model how entrepreneurial coaching can be organized in higher education. As Fayolle (2015) states, it is important that entrepreneurship education has a solid theoretical and conceptual foundation, drawing from both entrepreneurship and education. Therefore our model’s educational foundations are also clearly opened in this paper.

There are certain limits to this research, as it was undertaken at one university of applied sciences, and in a unique, regional environment. Therefore, it is influenced by policies, priorities and factors of the region and our university. However, by describing our model openly we hope to encourage entrepreneurship education professionals to develop practice-oriented coaching models using blended teaching methods.


Virpi Laukkanen, Savonia University of Applied Sciences, Principal Lecturer, Ph.D. (Econ.), Virpi.Laukkanen(at)savonia.fi

Audet, Josée and Couteret, Paul. 2012. Coaching the entrepreneur: features and success factors. Journal of Small Business and Enterprise Development, 19 (3), 515-531.

Crayford, Judith, Fearon, Colm, McLaughlin, Heather and van Vuuren, Wim. 2012. Affirming entrepreneurial education: learning, employability and personal development. Industrial and Commercial Training, 44 (4), 187-193.

Donnellon, Anne, Ollila, Susanne, Williams Middleton, Karen. 2014. Constructing entrepreneurial identity in entrepreneurship education. The International Journal of Management Education, 12 (2014), 490-499.

European Commission. 2012. Effects and impact of entrepreneurship programmes in higher education. European Commission, DG Enterprise and Industry.

European Commission. 2015. Entrepreneurship Education: A road to success – A compilation of evidence on the impact of entrepreneurship education strategies and measures. European Commission, Directorate-General for Internal Market, Industry, Entrepreneurship and SMEs.

Fayolle, Alain. 2015. Personal views on the future of entrepreneurship education. Entrepreneurship & Regional Development, 25 (7-8), 692-701.

Fenton, Mary & Barry, Almar. 2014. Breathing space – graduate entrepreneurs’ perspectives of entrepreneurship education in higher education. Education + Training, 56 (8/9), 733-744.

Gielnik, Michael, M., Barabas, Stefanie, Frese, Michael, Namatovu-Dawa, Rebecca, Scholz, Florian, A., Metzger, Juliane, R. & Walter, Thomas. 2014. A temporal analysis of how entrepreneurial goal intentions, positive fantasies, and action planning affect starting a new venture and when the effects wear off. Journal of Business Venturing, 29 (6), 755-772.

Henry, Colette. 2013. Entrepreneurship education in HE: are policy makers expecting too much? Education + Training, 55 (8/9), 836-848.

Higgins, David & Elliot, Chris. 2011. Learning to make sense: what works in entrepreneurial education? Journal of European Industrial Training, 35 (4), 345–367.

International Coaching Federation. 2016. What is professional coaching? http://coachfederation.org/need/landing.cfm?ItemNumber=978&navItemNumber=567. Last accessed 6th October 2016.

Joensuu, Sanna, Varamäki, Elina, Viljamaa, Anmari, Heikkilä, Tarja and Katajavirta, Marja. 2014. Yrittäjyysaikomukset, yrittäjyysaikomusten muutos ja näihin vaikuttavat tekijät koulutuksen aikana. Seinäjoen ammattikorkeakoulun julkaisusarja A. Tutkimuksia 16.

Jones, Colin, Matlay, Harry and Maritz, Alex. 2012. Enterprise education:  for all, or just some? Education + Training, 54 (8/9), 813-824.

Jones, Colin, Matlay, Harry, Penaluna, Kathryn & Penaluna, Andy. 2014. Claiming the future of enterprise education. Education + Training, 56 (8/9), 764-775.

Kirkwood, Jodyanne, Dwyer, Kirsty and Gray, Brendan. 2014. Students’ reflections on the value of an entrepreneurship education. The International Journal of Management Education, 12 (2012), 307-316.

Laukkanen, Virpi & Iire, Antti. 2015. Entrepreneurial Coaching for Master Students. Supporting Skills and Courage. Proceedings of RENT XXIX –conference. Research in Entrepreneurship and Small Business, Zagreb, Croatia, November 18-20, 2015.

OECD. 2012. A Guiding Framework for Entrepreneurial Universities.

QAA. 2012. Enterprise and entrepreneurship education: Guidance for UK higher education providers. The Quality Assurance Agency for Higher Education.

Solesvik, Marina, Westhead, Paul, Matlay, Harry & Parsyak, Vladimir, N. 2013. Entrepreneurial assets and mindsets. Benefit from university entrepreneurship education investment. Education + Training, 55 (8/9), 748-762.

Solesvik, Marina, Westhead, Paul & Matlay, Harry. 2014. Cultural factors and entrepreneurial intention. The role of entrepreneurship education. Education + Training, 56 (8/9), 680-696.

Støren, Liv Anne. 2014. Entrepreneurship in higher education. Impacts on graduates’ entrepreneurial intentions, activity and learning outcome. Education + Training, 56 (8/9), 795-813.

Van Gelderen, Marco, Kautonen, Teemu & Fink, Matthias. 2015. From entrepreneurial intentions to actions: Self-control and action-related doubt, fear and aversion. Journal of Business Venturing, 30 (2015), 655-673.

AMK-lehti // UAS Journalin vuoden 2017 teemat on valittu

Vuoden 2017 teemat ovat

1/2017, Teema: Korkeakoulut todellisuuden lisääjinä –  digitaalinen oppiminen korkeakouluissa, ilmestyy maaliskuussa 2017 (vko 10)

2/2017, Teema: Ammattikorkeakoulut hyvinvointipalveluiden kehittämiskumppanina, ilmestyy toukokuussa 2017 (vko 20)

3/2017, Teema: Avoin innovaatiotoiminta, ilmestyy syyskuussa 2017 (vko 39)

4/2017, Teema: Koulutuksen vienti, ilmestyy joulukuussa 2017 (vko 49)

Jos olet kiinnostunut tietyn numeron toimittamisesta, ota yhteyttä päätoimittajaan ilkka.vaananen@lamk.fi

Kuva: Metropolian kuva-arkisto

Kokeilukulttuuri on taitolaji

Ammattikorkeakouluissa on kehittämisestä ja ketteristä kokeiluista innostunutta väkeä. Siitä hyvänä osoituksena on tämä käsissäsi oleva ajankohtainen kokeilukulttuurin teemanumero ja sen tarjoama laaja kattaus eri alojen artikkeleita.

Olemme kuluneen neljännesvuosisadan aikana ottaneet paikkamme suomalaisessa yhteiskunnassa korkeakouluttajina ja työelämän kumppaneina. Mutta sen lisäksi olemme toimineet myös esimerkkinä omien organisaatioprosessiemme parantamisessa. Haluamme itse elää niin kuin opetamme. Se on tapa ansaita luottamusta opiskelijoiden, ympäristömme ja yhteistyötahojemme keskuudessa. Tässä lehdessä onkin mukana, paitsi eri koulutusalojen, myös ilahduttavasti esimerkiksi ammattikorkeakoulujen turvallisuusjohtamiseen tai tietotyötä tekevien työn organisoinnin kehittämiseen liittyviä asiatuntija-artikkeleita ja katsauksia.

Mutkikkaiden syy-seuraussuhteiden vuoksi yhteiskunnan uudistaminen poliittisilla päätöksillä on tullut aiempaa vaikeammaksi. Siksi kokeilukulttuurin vahvistaminen on yksi nykyisen hallitusohjelman kärkihankkeita: kokeilemalla valtakunnalliseksi aiottua ratkaisua ensin pienemmässä mittakaavassa voidaan tehdä päätös sen laajemmasta ja pysyvämmästä käyttöönotosta. Myös ammattikorkeakorkeakouluissa, joissa tunnistetaan työelämän käytännöt, on lähdetty ennakkoluulottomasti hyödyntämään kokeilukulttuurin periaatteita ja testaamaan nopeasti uusia toimintakonsepteja koko yhteiskunnan hyväksi.

Kaiken ketteryyden keskellä on hyvä muistaa, ettei kokeilukulttuurin innostavan käsitteen alle kannata koota kaikkea perinteistä kehittämistoimintaa tai pitkän aikavälin suunnittelulle perustuvia hankkeita. Kokeilut olisi hyvä avoimesti määritellä organisaatioissamme ja erottaa ne muista kehittämisen tavoista. On tärkeää aina välillä pysähtyä pohtimaan myös, mikä on hankkeen ja kokeilun ero? Ei ole myöskään syytä ajatella, että koeasetelmat, testikierrokset ja nopeat kurssin muutokset prosessin aikana sopisivat kaikkiin kehittämisen tarpeisiin. Kokeilukulttuuri on yksi hyvä renki muiden joukossa, muttei sovi isännäksi ammattikorkeakouluihinkaan.

Onneksi meillä opetusalalla on hyvät edellytykset pukea heti alusta alkaen sanoiksi ajatuksemme, mitä yksittäisessä kokeilussa tavoittelemme ja miten siitä etenemme suurempaan korkeakoulun vaikuttavuuteen. Jos haluamme arvioida kokeilun todellisia tuloksia, esimerkiksi verrokkiryhmän avulla voimme saada enemmän informaatiota kuin vain uuteen toimintaan osallistuneille kohdennetulla palautekyselyllä. Tarvitaan myös kokeilukulttuuriin liittyvää esimiestyötä, jotta kokeiluja koordinoidaan, yhdenmukaistetaan ja suunnataan kohti yhteisiä tavoitteita. Ilman hyvää johtamista ja organisaation yhteisiä toimintamalleja ei lupaaviakaan kokeiluja hevin viedä ammattikorkeakouluissa seuraavalle, aiempaa kattavammalle tasolle.

Ilman hyvää johtamista ja organisaation yhteisiä toimintamalleja ei lupaaviakaan kokeiluja hevin viedä ammattikorkeakouluissa seuraavalle, aiempaa kattavammalle tasolle.

Kokeilukulttuuri sopii luontevasti meille ammattikorkeakoulujen väelle. Kun luemme tämän teemanumeron artikkeleita, saatamme silti huomata olevamme vielä melko alussa kokeilumenetelmien kehittämisessä ja koordinointia edistävien mallien luomisessa. Vaan entäpä jos pitäisimmekin tätä artikkelikokonaisuutta ensimmäisenä iteraatiokierroksena ja toteuttaisimme vastaavan teemanumeron esimerkiksi kahden vuoden päästä uudelleen? Mitä kaikkea jo osaisimme paremmin? Mitä sellaista esittelisimme ylpeänä, jossa olemme edenneet yksittäisistä kokeiluista laajempaan käyttöönottoon ja yhteiskunnalliseen vaikuttavuuteen?


Riitta Konkola, toimitusjohtaja-rehtori, Metropolia Ammattikorkeakoulu, riitta.konkola(at)metropolia.fi

Kurvinen, pääkuva

Kokeiluekosysteemiä kehittämässä: innovointitoimeksiannot sidosryhmien yhdistäjänä

Kokeileva kehittäminen on tällä hetkellä pinnalla oleva asia. Sen hyödyntäminen eri organisaatioiden arjessa on kuitenkin vielä alkutaipaleella. Yritysten on pystyttävä uudistamaan toimintaansa ja synnyttämään myös radikaaleja innovaatioita nopeammalla tahdilla. Yksi luonteva tapa kokeilukulttuurin luomiseen organisaatioissa on kiinteä työelämälähtöinen yhteistyö oppilaitosten ja elinkeinoelämän välillä.

Saimaan ammattikorkeakoulu on mukana useissa suurissa tutkimus-, kehitys ja innovaatiohankkeissa, joiden tuloksellisuus pohjautuu vahvasti kokeilevaan kehittämiseen sekä nopeiden kokeiluiden synnyttämiseen yhteistyöorganisaatioissa. Luotu toimintamalli kokemuksemme perusteella sekä auttaa saavuttamaan hankkeissa tavoiteltuja tuloksia että täyttää vahvasti ammattikorkeakouluopetuksen tehtävää työelämälähtöisenä kouluttajana ja aluevaikuttajana.

Tässä artikkelissa esittelemme nykyisen kokeiluekosysteemimme. Mallissa tiimioppiminen, tiimiyrittäjyys sekä tutkimus- ja innovaatiotoimintaan tähtäävät hankkeet kytkeytyvät toisiinsa tavalla, joka vahvistaa kokeilevan kehittämisen kulttuuria ympäröivässä elinkeinoelämässä sekä julkisen sektorin toiminnassa. Ekosysteemin osana toimivat liiketalouden tradenomiopiskelijat ovat päässeet mukaan työelämälähtöisiin kehitystehtäviin ja käyttämään kokeilevan kehittämisen menetelmiä kokeneiden tutkijoiden ohjauksessa. Sen ansiosta heidän valmiutensa astua työmarkkinoille on vahvistunut.

Saimaan ammattikorkeakoulussa liiketalouden koulutusohjelmassa markkinoinnin suuntautumisvaihtoehdon valinneet tradenomiopiskelijat ovat vuodesta 2009 lähtien opiskelleet tiimiyrittäjämallilla. Käytännössä tiimiyrittäjyys tarkoittaa sitä, että ensimmäisen opiskeluvuoden keväällä tämän opintopolun valinneet perustavat yhdessä osuuskuntamuotoisen yrityksen ja pyörittävät sitä seuraavat kaksi ja puoli vuotta. Opinnot koostuvat kirjojen lukemisesta, asiakasprojekteista, treeneistä sekä innovointitoimeksiannoista. Tiimioppiminen ja tiimiyrittäjyys pohjautuvat kokemusperäiseen oppimiseen (Kolb, 1984) sekä tiedon luomiseen (Von Krogh et al. 2000). Tiimiyrittäjät reflektoivat ja käsitteellistävät käytännön projekteissa opittua yhdessä tiimivalmentajan kanssa. Tätä oppia yhdistetään kirjoista ja muista tietolähteistä hankittuun tietopääomaan.

Tiimiyrittäjien kaksi ja puoli vuotta kestävään valmennusprosessiin kuuluu yhteensä neljä 12 tunnin ja vähintään yksi 24 tunnin innovointityöpaja.  Innovointityöpajat ovat samalla opiskelijoiden osaamisen välinäyttöjä. Innovointien toimeksiantajina ovat usein lähialueen yritykset tai muut organisaatiot. Toimeksiantaja arvioi innovoinnin tuloksen ja maksaa onnistuneesta innovoinnista tiimiosuuskunnalle ennalta sovitun palkkion. Innovaatiotoimeksiannot tuottavat runsasta arvoa (Tikka ja Gävert, 2014) kaikille siihen osallistuville tahoille:

  • Toimeksiantajalle kokeilu on riskitön – jos ei tule hyödyllistä tulosta, niin ei maksa mitään. Ainoastaan hyödyllisistä tuloksista maksetaan.
  • Tiimiyrittäjille kokeilu on joka kerta erilainen, koska toimeksiantaja vaihtuu – innovointiprosessista opitaan joka kerta ja siinä tullaan paremmaksi koko ajan. Samalla toimeksianto toimii sisäänheittotuotteena: moni asiakkuus on saanut alkunsa innovointitoimeksiannon kautta.
  • Tiimivalmentajalle (ja tiimille) toimeksianto on osoitus siitä, mitä osaamista tiimissä jo on ja mitä osaamista vielä puuttuu.
  • Tutkijatiimille (valmentajille, jotka toimivat tki-hankkeissa myös tutkijoina) toimeksiannot nostavat esille runsaasti kehittämiskohteita toimeksiantajaorganisaatiosta – osaan näistä voidaan tarjota tukea tki-hankkeiden avulla.

Tiimiyrittäjät tutustuvat osana oman tiimin kehittämistä tiimirooleihin (Belbin, 2003), kokonaisvaltaisen innovointiprosessin vaiheisiin (Furr ja Dyer, 2014) sekä keinoihin, joiden avulla voi saada nopeasti aikaan tuloksia verkoston yhdistäjiin, tietäjiin ja myyntimiehiin (katso esim. Gladwell, 2013) vaikuttamalla.

Kokeilevalle kehittämiselle on tyypillistä, että käyttäjät tai asiakkaat saavat kehitettävän palvelun tai tuotteen kokeiltavaksi hyvin varhaisessa vaiheessa prosessia. Ajatuksena on saada nopeasti palautetta idean toimivuudesta, jolloin ideaa päästään vaiheittain ja systemaattisesti jalostamaan eteenpäin. Tällaisella kokeiluihin perustuvalla innovointimallilla pyritään kehitystoiminnan ketteryyteen. Samalla sidosryhmät, asiakkaat ja organisaatio itse sitoutuvat ideaan ja kehitystoimintaan jo varhaisessa vaiheessa. Schrage (2000) on esittänyt, että asiakkaan ajattelu käynnistyy vasta siinä vaiheessa kun hän näkee ”mitä voisi olla?” eli esimerkiksi luonnoksen kampanjan mainoksesta tai luonnosversion Facebook- tai web-sivustosta.

Kuvassa 1 esitellään Saimaan ammattikorkeakoulun tiimiosuuskuntien, Saimaan ammattikorkeakoulun sekä Lappeenrannan teknillisen yliopiston (LUT) tutkimustoiminnan ja yrityselämän sekä muiden organisaatioiden muodostama vuorovaikutteinen kokeiluekosysteemi nykyisessä muodossaan. Ammattikorkeakoulun ja yliopiston tutkijat kehittävät kokeiluekosysteemiä edelleen DigiKaappaus-hankkeessa[1].

Kuva 1. Nykyinen kokeiluekosysteemi (mukautettu lähteen Juvonen 2016 pohjalta).

Nykyisessä kokeilevan kehittämisen ekosysteemissä keskeisin elementti on eri tahojen ja erilaisissa rooleissa toimivien ihmisten yhteistyö. Paikalliset yritykset ja kaupungit ovat yhtäältä esittämässä työelämän tarpeita tradenomien osaamiselle, mutta toisaalta voivat itse vaikuttaa osaamisen kehittämiseen tarjoamalla mm. hyviä toimeksiantoja ja projekteja tiimiyrittäjäyhteisölle. Edelleen, tiimivalmentajat tarjoavat tiimin kehittämisen tukea valmentamalla ja tutkijan roolissa he voivat tarjota tutkimusmenetelmällistä osaamistaan. Tässä tarkastelussa on ekosysteemistä nostettu esille tiimiyrittäjien ja ammattikorkeakoulun muiden opiskelijoiden rooli, mutta on huomattava, että kaikki kuvassa 1 esitetyt osapuolet tekevät jatkuvasti tki-työtä.

Tiimiyrittäjät ovat saaneet innovointitoimeksiantoja muutamilta Saimaan ammattikorkeakoulun ja Lappeenrannan teknillisen yliopiston yhteisistä tki-hankkeilta. Näissä toimeksiantajana on ollut suuri case-organisaatio ja mukana innovoimassa on tiimiyrittäjien mukana ollut pienempien case-organisaatioiden henkilöstöä. Yhdistämällä eri alan osaamista on saatu aikaan tuloksia, joita myös maakunnan lehdet ovat huomioineet myönteisesti. Innovointityöpajat ovatkin luonteva työkalu, jonka avulla erilaisten organisaatioiden edustajat pääsevät kokeilevan kehittämisen pariin. Työpaja toimii alustana, joka saattaa yhteen toimeksiantajatahon, tiimiyrittäjäopiskelijat, tutkijat ja asiantuntijat. Työpajatoiminta tuottaa organisaatioille nopeita kokeiluja ja ratkaisuehdotuksia heidän tarpeeseensa sekä empiiristä aineistoa tutkimustoiminnan pohjaksi. Lisäksi erilaiset organisaatiot pääsevät testaamaan tai näkemään kokeilevan kehittämisen prosessia käytännössä.

Tiimiyrittäjät pyytävät innovaatiotyöpajojen toimeksiantajilta systemaattisesta palautetta onnistumisestaan. Suurin osa toimeksiantajista päätyy lopulta tiimiyritysten asiakkaiksi. Tämä kertoo siitä, että he ovat olleet pääosin tyytyväisiä saatuihin tuloksiin. Erään yrityksen kertoman mukaan 12 tunnin innovointitoimeksianto oli osoitus uuden aikakauden palvelumuotoilusta, joka oli hyvinkin houkutteleva yrityksen näkökulmasta. Perinteisesti liiketoiminnan kehittämiseen ja strategiatyöhön liittyvät toimeksiannot ovat aikaa vieviä ja tekijöiltä odotetaan vahvaa substanssiosaamista. Tiimiyrittäjät markkinoivat innovointipalveluaan raikkaasti erilaisesta lähtökohdasta, mikä herätti tämän yrityksen mielenkiinnon antaa toimeksianto innokkaalle joukolle tulevia ammattilaisia. ”Lopputulos oli erinomainen, yrityksemme hyötyi toimeksiannon tuloksista”, totesi toimeksiantaja palautteessaan.

Kokeilusuunnitelma vie ideat käytäntöön

On hyvä muistaa, että innovaatiotyöpajat ovat usein melko kaukana organisaatioiden normaalista arjesta. Valitettavan usein työpajoissa synnytetyt uudet ideat jäävät kokonaan viemättä käytäntöön. Tämä on tunnistettu Saimaan ammattikorkeakoulun, Lappeenrannan teknillisen yliopiston ja VTT:n yhteinen Peluri-tutkimushankkeessa, joka etsii 12 case-organisaation kanssa strategisia arvoinnovaatioita. Mukana olevat tutkijat ovat luoneet hankkeessa synnytettyjen nopeiden kokeilujen käytäntöön vientiä helpottamaan työkalun. Tämä kokeilusuunnitelmatyökalu kiteyttää kokeilun kannalta merkitykselliset asiat. Samalla se tekee näkyväksi kokeilun toteuttamiseen mahdollisesti liittyvät hidasteet ja esteet sekä tuo esiin  onnistumisia edesauttavat seikat. Suppean analyysin pohjalta päästään kiinni tärkeimpään kysymykseen,  siihen kuinka esteet voidaan ylittää tai poistaa kokonaan. Suunnitelmatyökalu ohjaa lopuksi nimeämään konkreettisesti kolme seuraavaa askelta kokeilun toteuttamiseksi (Juvonen ym. 2016, 32).

Huolellista heittäytymistä

Jotta ekosysteemi todella toimii, on erittäin tärkeää, että valmentaja (tai tutkija) ohjaa prosessia ja että osallistujat ovat kaikissa vaiheissa valmiita oman toimintansa reflektointiin.  Opiskelijaryhmät arvioivat prosessia luontevasti oppimistapahtuman yhteydessä. Vastuuvalmentaja tai -tutkija puolestaan on avainasemassa, kun hän käy kokemuksia läpi toimeksiantajayritysten ja -organisaatioiden kanssa.

Monelle osallistuvalle organisaatiolle saattaa olla yllätys, että kokeiluja ja kehitystyötä voidaan tehdä käytännönläheisesti ja pienin resurssein

On myös syytä huomata, etteivät kaikki kokeilut tuota onnistumisia − ja tämäkin on oltava valmis kohtaamaan. Kokeilemiseen ja uuden luomiseen liittyy paljon epävarmuutta, mitä on siedettävä, jotta voi lähteä kokeilemaan. Kokeiluiden avulla ja prosessin edetessä epävarmuus vähenee. Kyky heittäytyä hallitusti kuvaa parhaiten tätä vaatimusta.

Kokeiluja ja tekemistä jäsentämään on hyvä hankkia työkaluja ja aiempaa tutkimustietoa, jotta prosessissa on jäsennelty viitekehys. On tärkeää, että luottamus ja yhteistyön edellytykset säilyvät myös uusia kehitystehtäviä ja tulevaa yhteistyötä ajatellen. Kokeileva kehittäminen tähtää parannuksiin, kehittämiseen ja innovaatioiden synnyttämiseen nopeasti ja ketterästi. Monelle osallistuvalle organisaatiolle saattaa olla yllätys, että kokeiluja ja kehitystyötä voidaan tehdä käytännönläheisesti ja pienin resurssein. Kehitysaskeleet saattavat näyttää hyvin pieniltä, mutta niillä voi olla tavoitellun asian tai kokonaisuuden kannalta suuri merkitys.

[1] DigiKaappaus-hanke aktivoi elinkeinoelämää, kaupunkeja ja kuntalaisia luomaan yhdessä uutta siten, että jokainen osapuoli hyötyy yhteistyöstä. Digikaappauksessa tutkitaan uusia toimintatapoja digitaalisten palveluiden kehittämiseen yhdessä. Tutkimuksessa hyödynnetään nopeaa kokeilevaa kehittämistä, jossa korostuu runsaan ennakkosuunnittelun sijasta tekemisen meininki. Toisaalta digitaalisten palveluiden ideointiin ja kehittämiseen osallistetaan kuntalaisia, millä varmistetaan palveluiden toiminta käyttäjien näkökulmasta. DigiKaappaus-hanke toteutetaan Saimaan ammattikorkeakoulun, Lappeenrannan teknillisen yliopiston, 11 yrityksen ja kahden kaupungin tiiviissä yhteistyössä. Hanke on rahoitettu Tekesin Liideri-ohjelmasta ja se toteutetaan vuosien 2016 – 2018 aikana.


Anu Kurvinen, KTM, lehtori, Saimaan ammattikorkeakoulu, anu.kurvinen(at)saimia.fi
Pasi Juvonen, TkT, lehtori, tiimivalmentaja, Saimaan ammattikorkeakoulu, pasi.juvonen(at)saimia.fi


Belbin, R. M. (2010). Team Roles at Work, Taylor & Francis.

Furr, N. & Dyer, J. 2014. The Innovator’s Method. Bringing the Lean Startup into your Organization. Harvard Business Review Press. Printed in the United States of America.

Gladwell, M. (2013). Leimahduspiste. Kuinka pienet asiat saavat aikaan suuria muutoksia. WSOY.

Juvonen, P. (2016). Comparison of two learning and team entrepreneurship models at a Finnish University of Applied Sciences. Setting the scene for future development. International Conference on Interactive Collaborative Learning. Esitetty Belfastissa, Pohjois-Irlannissa 21.9.2016. Tullaan myöhemmin julkaisemaan Springerin toimesta konferenssijulkaisussa.

Juvonen, P, Kurvinen, A, Salmela, E. (2016). Perehdyttäminen paremmaksi – laatua ja tehokkuutta kokeilevasti kehittäen. Yrittäjä Etelä-Karjala. 2/2016.

Kolb, D. (1984). Experiental Learning. Prentice-Hall, Englewood Cliffs, NJ.

Schrage, M. (2000). Serious Play. How the World’s Best Companies Simulate to Innovate. Harvard Business School Press. Printed in the United States of the America.

Tikka, V. & Gävert, N. (2014). Arvonluonnin uusi aalto. Tekesin katsaus 309/2014. Saatavilla osoitteesta: https://www.tekes.fi/globalassets/julkaisut/arvonluonnin_uusi_aalto_309_2014.pdf

Von Krogh, G., Ichijo, K, & Nonaka, I. (2000). Enabling Knowledge Creation. How to Unlock the

Mystery of Tacit Knowledge and Release the Power of Innovation. Oxford University Press.


Kokeilukulttuuri muotoiluprosessin tekemisen tapana

Muotoiluprosessi, muotoiluajattelu ja kokeilukulttuuri

Samanaikaisesti kun kokeilukulttuuria on alettu toteuttaa ratkaisuna nopean ennakoimattoman muutoksen ja eri ilmiöiden monimutkaisten vaikutussuhteiden haasteeseen on yhtenä vastaavana toimintatapana muotoiluprosessi otettu hyötykäyttöön myös muotoiluammatin ulkopuolella. Erityisesti Yhdysvalloissa on liiketoiminnan yliopistokoulutuksissa alettu opettaa muotoiluprosessiin perustuvaa muotoiluajattelua keinona vastata muuttuvien markkinoiden haasteisiin. Suomessa on viime vuosina erityisesti muotoiluprosessista kumpuavan palvelumuotoilun rooli vastaavasti korostunut.

Mikä sitten liittää muotoiluprosessin ja kokeilukulttuurin yhteen? Muotoiluprosessi on etsimistä, ongelman jopa uudelleen asettelua, mahdollisuuksien monialaista ymmärtämistä ja vaihtoehtoisien ratkaisujen ideoimista korostava kehittämisprosessi, kuten monet muutkin luoviin ratkaisuihin pyrkivät prosessit. Tämän lisäksi muotoiluprosessissa erityisesti tuotetaan visuaalisesti konkretisoituja vaihtoehtoja ja sillä on vahva kytkentä liiketoiminnalliseen tuotekehitykseen. Visualisointien kautta ratkaisuehdotusten arviointi, testaaminen ja parhaiden valinta ovat mahdollisia ja konsepteja voidaan rakentaa synteesinä aiemmista prosessin kokeilusta ja niiden tuloksista. Muotoilun erilaiset konkretisoinnit palvelevat eri alojen osallisten keskustelua, yhteistä ymmärtämistä, ongelman asettelua, arviointia, yhteisesti tuotettujen ratkaisujen löytämistä, ratkaisukokonaisuuksien rakentamista sekä käyttäjävuorovaikutusta ja -testausta. Tällaisia prosessin vaiheita on mahdollista toteuttaa myös järjestelmien ja ei-materiaalisten arvojen suunnittelussa.

Keljut haasteet ja epävarmuuden maailma

Kokeilukulttuuria on korostettu työskentelymenetelmänä, joka on tarpeen keljujen ongelmien maailmassa, kun innovaatiotoimintaa leimaa sumea epävarma alkupää. Keljujen ongelmien analyysi on syntynyt alun perin Ulmin saksalaisessa muotoilukoulussa, kun aiemmat suunnittelutyön periaatteet eivät enää tuntuneet toimivan yhä keljummiksi muuttuvien suunnittelutarpeiden edessä.

Vanhassa suunnitteluajattelussa suunniteltiin vaihe vaiheelta, systemaattis-loogisella tavalla ratkaisuja, joista pystyttiin jo varsin alkuvaiheessa selvittämään ja päättelemään, optimaalinen suunta. Suunnittelutoimintaa onkin usein kuvattu systemaattis-loogisen prosessin avulla. Muotoilussa on kuitenkin tyypillistä työskentely kehittämistyön alkupäässä erilaisia vaihtoehtoja etsien ja kokeillen ja tämän avulla asetettua ongelmaa haastaen ja tutkien sekä aiempia ratkaisupolkuja kyseenalaistaen. Muotoilu ei tähtää jo olemassa oleviin ratkaisuihin vaan mahdollisiin tulevaisuuden maailmoihin ja sen kuvittelemiseen, mitä erilaisia haasteita ja vaihtoehtoja kehittämistehtävässä on.

Muotoilulle tyypilliset nopeat ja alussa liikaa kritisointia välttävät kokeilut tuottavat epäonnistumisia, joilla on tärkeä merkitys oppimisen ja jopa odottamattomien näkemysten välineenä. Oppiminen tapahtuu niin, että erilaisten kokeilujen, eri tasoisten prototyyppien ja mallinnuksen avulla ideoita ja konseptia konkretisoidaan monta kierrosta arvioiden ja taas parannetulla versiolla uudelleen kokeillen. Konkretisoiva asioiden ja ilmiöiden kokeilu rohkaisee koko kehittämistiimiä havaintoihin ja löytöihin. Muotoiluprosessissa käydään käsiksi innovaatiotoiminnan hämärään alkupäähän etsimällä varsinaista ongelmaa ja haasteita sekä niitä ratkovia uusia toimintatapoja tai -konsepteja nopeasti kokeilemalla ja konkretisoimalla.

Kokeilussa paljastuneista hyvistä ominaisuuksista voidaan lähteä rakentamaan käytännön monimutkaisessa tilanteessa toimivaa ratkaisua, joka perustuu johonkin muuhun kuin optimaalisen ratkaisun laskukaavaan. Tällaisessa kokeilemisessa on tärkeää myös se, että käytön todellinen tilanne tulee otettua huomioon. Usein kehittämistyössä esiin tulevat ideat ja ratkaisut perustuvat jostain erilaisista tilanteista saatuihin virikkeisiin ja malleihin. Ne eivät välttämättä sovellu sellaisenaan johonkin toisenlaiseen käyttötilanteeseen, ota huomioon tuon käyttötilanteen sidosryhmiä, erilaisia käyttäjiä ja konkreettista käyttöympäristöä tai verkostoja.

Sanoista konkretiaksi

Suunnittelutyössä ajattelun tekeminen myös näkyväksi ja kokeilut osana ajattelua parantaa jo alkuvaiheessa innovaatioprosessin etenemistä. Epävarmaakin lähtötilannetta on helpompi sietää, kun tulosten todellistuminen nopeiksi kokeiluiksi luo tuottavaa ja siten motivoivaa ilmapiiriä, jota epävarma maailma ja kehittämistehtävät muutoin helposti nakertavat.

Ratkaisuprosessit vaativat mielen sisäisen ajattelun lisäksi myös toiminnan ja fyysisen ympäristön välistä vuorovaikutusta. Muotoilu pyrkii tuottamaan abstraktin tai vain sanallisessa muodossa esiintyvän ajattelun ulkoapäin havainnoitavaan muotoon konkretisoiden mielen sisäiset ajatteluprosessit käsin kosketeltaviksi etsimis- ja arviointimateriaaleiksi. Kokeilulliset visualisoinnit rakentavat ongelmakenttää ja määrittävät haasteiden luonnetta erilaisten ratkaisunäkökulmien, olosuhteiden, ongelmien ja vaatimusten muodossa. Arvioitavissa oleva materiaali on tärkeä väline vaihtoehtoja rajaavalle ja optimaalisia ratkaisuja etsivälle kehittämiselle. Kun kohde nähdään todellisuudessa, se auttaa tekemään oikeita ratkaisuja osoittamalla ne kohdat, joissa ratkaisu on epäonnistunut ja toisaalta ne onnistumiset, joiden kautta ratkaisua kannattaa viedä eteenpäin. Koska verbaalinen maailman ymmärtämisen reitti ja ajattelu ovat vain osa meidän tapaamme ymmärtää maailmaa, pitäisi myös aistinvaraisiin, kuten visuaalisiin, kokemuksiin liittyvä ymmärtäminen ottaa vahvasti mukaan kehittämistyöhön. Ajatteluamme hallitsee pikemminkin tunnekokemuksin latautunut mielikuvamaailma ja siihen liittyvä mentaalinen kartta kuin sanallinen rakenne ja analyysi.

Abstraktin ja sanallisen ajattelun konkretisoiminen on tärkeää, koska sanat ymmärretään eri tavoin ymmärtäjän kokemustaustasta riippuen ja sanallisessa keskustelussa ratkaisuihin jää helposti aukkoja, jotka konkretisoivissa kokeiluissa voidaan täydentää. Innovaatiotoimintaan kytketty merkityksellistäminen, sense making, pohjaa viestinnän tutkijoiden havaintoihin siitä, miten visualisoinnit ja konkretisoinnit ovat tärkeä osa yhteistoimintaa. Merkityksellistäminen on erityisen tärkeää, koska yhä useammin kehittämistyötä tehdään monialaisten ryhmien ja tiimien toimesta.

Konkretisoinnilla vasta tehdään päätöksiä monista asioista, jotka abstraktilla ja sanojen tasolla jäävät epämääräiseksi. Esimerkiksi suunnittelupuheessa käytetään paljon adjektiiveja kuvaamaan jonkin asian luonnetta ja sanallisesti ei voi määrittää sitä, millaisena tuo asia ihan oikeasti konkreettisina valintoina todellistuu. Eri alojen asiantuntijat ja toisaalta myös suunnitteluprosesseihin osallistuvat käyttäjät saattavat tarkoittaa samalla sanalla erilaisia asioita. Huomattavaa on myös se, että jopa konkreettisia asioita kuvaavat sanat voidaan mieltää erilaisiksi todellistumiksi.

Ratkaisukokonaisuudet jäävät puheen tasolla helposti puutteellisiksi, mistä syystä abstraktien tulevaisuuskuvailujen jatkeena ratkaisujen konkretisointi on tärkeää. Suunnitellun asian fyysiseksi tekeminen pakottaa suunnittelussa mukana olevat määrittämään asioita loppuun asti.  Konkretisointi esittelee, mitä ideoiden toiminnalliset tai muut periaatteet todellisuudessa olisivat ja miten ne toimisivat. Konkretisointi näyttää ja määrittää, mitä yksityiskohdat ovat, ovatko ne sopivia sekä mitä pienempien yksityiskohtien suhde toisiinsa on ja niiden painoarvo kokonaisuudessa. Konkretisointi demonstroi, onko ratkaisun synteesi sellainen kuin eri osalliset ajattelivat ja näyttää eri alojen välisiä rakenteellisia aukkoja jatkokehittämisessä ratkaistavaksi.

Kälviäinen, kuva 1

Kälviäinen, kuva 2

Kälviäinen, kuva 3
Kuvat 1-3. Esimerkkinä muotoilulle tyypillisestä konkretisoinnista on Lahden kaupungin yhteispalvelupisteen kehittämistyöpajan työskentelymateriaalit (kuva 1) ja työpajan jälkeen tehdyt toimivan tilan konseptoinnit (Kuva 2-3). Muotoilu- ja media-alan ylemmän amk tutkinnon opiskelijoiden tuottamaa materiaalia.

Kokeilujen arviointi

Konkreettisina esitetyt tulokset sallivat kaikkien kehittäjien tutkia, kokeilla ja analysoida niitä. Tutkimisen, etsimisen ja kokeilemisen prosessissa on samanaikaisesti sekä ajatuksellista työskentelyä että sen ulkoistamista eri tavoin, ideointia ja arviointia iteratiivisella, jatkuvaa palautetta ja korjaamista hyödyntävällä tavalla.

Konkretisointien luonteessa on toisaalta tärkeää muistaa niiden osittain viimeistelemätön luonne, koska se palvelee tärkeää palautteen saamista. Oikeaa ratkaisua muistuttava toiminnallinen prototyyppi on hyvä väline vasta kun arvioidaan ratkaisun toimintaa lopullisessa käytössä. Alkuvaiheen kokeilut tutkimisen välineinä pitäisi olla helposti rakennettavissa ja muunneltavissa. Jos kokeilut ovat liian hienoja ja valmiita, niin käyttäjät eivät välttämättä uskalla antaa negatiivista palautetta tai arviointeja. Kehittämisen toimintatavalla on merkitystä: kehittämisajatusten konkreettisella jakamisella ja näkyväksi tekemisellä erilaisten materiaalien, luonnosten, lehtileikkeiden, mallien tai fyysisten prototyyppien avulla palvellaan yhteisen kehittämismuistin ja yhteisen ajattelun edistämistä. Meneillään olevan kehittämistyön näkyvillä olo edistää kritiikkiä, rohkaisee yhteistoiminnallista ja keskustelevaa työskentelytapaa ja palautteen saamista. Muotoiluprosesseissa tämä kehittämisen näkyvillä olo on tyypillistä.

Monimutkaisissa liiketoimintaratkaisuissa tarvitaan myös abstraktien verkosto- ja systeemimallien visualisointeja. Kehittämisratkaisuilla voi olla muutosvaikutuksia asioiden organisoimiseen, ihmisten väliseen vuorovaikutukseen, fyysiseen toimintaan ja toiminnan tunteenomaiseen kokemiseen. Kehittämistyössä täytyy mallintaa, ja sen kautta ymmärtää ja arvioida, tällaisia tulevaisuuden käyttötilanteiden moniulotteisia tekijöitä. Muotoilussa käytetyt tilanteeseen sijoittamisen strategiat, kuten simulaatiot, sarjakuvamaiset kertomukset ja skenaariot konkretisoivat tulevaisuuden tilanteita. Konkretisoinnit ovat erityisen tarpeellisia immateriaalisissa kehittämiskohteissa, kuten palveluissa, joissa palveluprosessia konkretisoidaan arvioitavissa olevaan muotoon.

Arviointia ja parannuksien tarpeita etsitään sisäiseltä tiimiltä, asiakkaan tiimiltä, ulkopuolisilta asiantuntijoilta sekä palautteena ja arviointina että havainnoivaa kokeilua käyttäen. Ratkaisun kokeilemisen havainnoinnilla voidaan analysoida, mikä toimii ja mikä ei. Konkreettiseksi tehtyä varhaista ideaa tai pidemmälle vietyä konseptia testaamalla voidaan selvittää, onko idea tai konsepti ymmärrettävä, miellyttävä, tyydyttääkö se kaikki käyttäjätarpeet, miten käyttäjä sitä käyttäisi ja voisiko sitä parantaa. Erityisesti käyttäjien palautetta ja osallistumista voidaan edistää osana prosessia, kun ideat ja konseptit konkretisoidaan eri tavoin.


Mirja Kälviäinen, FT, yliopettaja, dosentti, Lahden ammattikorkeakoulu, mirja.kalviainen(at)lamk.fi

Tämä puheenvuoro perustuu seuraaviin aiemmin julkaistuihin artikkeleihin:

Kälviäinen, M. 2014. Muotoiluajattelua vai muotoilutoimintaa? Kirjassa Muotoiluajattelu. Toimittaja Satu Miettinen. Helsinki: Teknologiateollisuus.

Kälviäinen, M. 2012. Muotoiluviestintä kehittämistä konkretisoivana voimavarana. Tiedepolitiikka 3/2012, Design. Edistyksellinen tiedeliitto.

Kälviäinen, M. 2010. Interdisciplinary Interaction for the Early stages of Product and service development. Kirjassa Handbook of Research on Trends in Product Design and Development: Technological and Organizational Perspectives. IGI Global.

Kälviäinen, M – Räty U. 2011. Design as a sharing tool for interdisciplinary innovation. 9th European Academy of Design conference 3.-7.5.2011. the Endless End electronic publication. University of Porto.

Oamkin LAB-malli

Oamkin LAB-malli korostaa uskallusta, luottamusta ja oppimista

Kokeilukulttuuri menestyvissä IT-asiantuntijayrityksissä

“Digitalisaation aikana yrityksen tärkein voimavara on liike ja ennakkoluuloton kokeilemisen kulttuuri”, toteaa voimakkaasti kasvavan IT-yritys Reaktorin perustaja ja operatiivinen johtaja Tuomas Routto Talouselämä-lehden vuosittaisessa selvityksessä Suomen suurimmista IT-yrityksistä (Mäntylä 2016, 38). Eniten tulostaan kasvattaneiden yritysten joukosta erottuu viisi yhtiötä, joita yhdistää joustavuus, itseohjautuvien tiimien ja ketterien menetelmien käyttäminen toiminnassaan. Lisäksi niille on yhteistä panostaminen työhyvinvointiin ja organisaatiokulttuuriin. Ne haluavat olla työpaikkoja, joissa työ- ja vapaa-aika, sekä vapaus ja vastuu ovat tasapainossa. Talouselämän selvitys antaa ymmärtää, että IT-asiantuntijayritysten toimintakulttuuriin panostamisella olisi yhteys kilpailijoista erottuvaan kasvuun, kannattavuuteen ja kansainvälistymiseen.

Yhteiskunnallinen muutos edellyttää myös korkeakoulujen toiminnan kehittämistä vastaamaan paremmin sidosryhmiensä muuttuviin tarpeisiin. Korkeakoulut ovat edellä mainittujen IT-yritysten tapaan asiantuntijaorganisaatioita. Niiden henkilöstöllä tulisi olla kyky jakaa omaa osaamistaan ja luoda uusia ratkaisuja asiakkaiden hyödyksi, sekä toimia verkostoituneesti toteuttaen asiakaslähtöistä ongelmanratkaisua. Mutta voiko korkeakoulu olla kokeilukulttuuria hyödyntävä ja samalla työelämälähtöinen opiskelijoiden yksilölliset tarpeet huomioiva asiantuntijaorganisaatio? Tässä artikkelissa pyrimme kertomaan kokemuksistamme tämän haasteen ratkaisemisessa.

LAB-oppimismalli uudistamassa ammatillista oppimista

Työelämä tarvitsee nyt ja tulevaisuudessa ihmisiä, jotka luottavat itseensä sekä ovat toiminnassaan sitkeitä, luovia ja joustavia. Lisäksi sisäsyntyinen motivaatio ja halu kokeilla uutta ja oppia muiden kanssa tulevat osaksi työn tekemistä; jälkiteollinen työ on oppimista  (Sitra 2016, 34). Valitettavan usein koulut kuitenkin opettavat auktoriteetin alaisuudessa olemiseen ja ikävystymisen sietämiseen (Mann & Robinson 2009; Tze, Daniels & Klassen, 2016). Se ei tue tulevaisuuden ammattilaisuuden kehittymistä. Oulun ammattikorkeakoulussa on vastattu tähän haasteeseen kehittämällä LAB-malliksi kutsuttu uusi oppimisratkaisu. Sen tavoitteiden ja menetelmien taustalla on tulevaisuuden ammattilaisuuden vaatimukset. Tulkintamme näistä 2000-luvun taidoista ja kompetensseista (21th Century Skills) on esitetty kuviossa 1. Kyseisiin 2000-luvun taitoihin on viitattu useissa yhteyksissä (esim. Ananiadou & Claro, 2009; Binkley ym., 2012; Burkhardt, 2016; Dede, 2009; P21, 2011).

LAB-mallissa hyödynnämme käsitettä kompetenssi, joka sisältää tiedot, taidot ja asenteet (Ananiadou & Claro, 2009). Uskomme, että kuviossa esitettyjen kuuden osa-alueen kehittyminen edesauttaa tulevaisuuden ammattilaisuuden kehittymistä siten, että yksilö haluaa kehittyä sekä ammattilaisena että kansalaisena luottaen itseensä ja ollen vuorovaikutuksellisessa suhteessa ympäröivän yhteiskunnan muutokseen. (Karjalainen, Seppänen & Heikkinen, 2016.)


Kuvio 1. LAB-oppimismallin tulevaisuuden ammattilaisen kompetenssit.

Oamk LABien monialaiset ja kansainväliset opiskelijajatiimit koostuvat Oulun  ammattikorkeakoulun, kotimaisten ja kansainvälisten partnerikorkeakoulujen eri alojen opiskelijoista sekä lisäksi avoimen amkin kautta saapuvista kokeneista ammattilaisista ja omaa alaansa etsivistä nuorista. LAB-opinnot toteutetaan englannin kielellä ja ne kestävät opiskelijan oman valinnan mukaan yhden tai kaksi lukukautta. LAB-mallin mukaisessa oppimisessa keskeisiä sisältöjä ovat työelämälähtöisyys, luova ongelmanratkaisu, konseptisuunnittelu, tiimityötaidot, kansainvälisyys, yrittäjämäinen ajattelu, monialaisuus ja laaja-alainen osaaminen. Opiskelijoita kannustetaan tekemiseen, rohkeisiin valintoihin ja myös epäonnistumisista oppimiseen (vrt. Business Oulu 2016, Heikkinen 2014). Kehittäessään uusia innovaatioita ja liiketoimintamalleja eri toimialojen todellisiin ongelmiin, LAB-malli mahdollistaa opiskelijoille kokeilemiseen ja kehittämiseen perustuvan oppimisen. Tavoitteena on kouluttaa omasta osaamisestaan ja kehittämisalueistaan tietoisia uusia ammattilaisia, jotka osaavat työskennellä osana monikulttuurista ja monialaista tiimiä. Oppimisen kulttuurin lähtökohtana LAB-mallissa ovat yhdessä oppimisen ilo, luottamus itseen ja toisiin, vastuun ja vapauden tasapaino, asiakaslähtöinen ja verkostoitunut toimintamalli, sekä jatkuva muutos ja reflektion kautta kehittyminen.

Oulu Game LAB aloitti ensimmäisenä vuonna 2012. Nykyisin Oulu Game LABissa syntyy oppimisen tuloksena pelikonsepteja, -demoja, -tuotteita ja startup-yrityksiä. Oulu EduLAB keskittyy koulutusinnovaatioihin ja -teknologiaan. Oulu DevLABin fokuksena ovat kestävän kehityksen sekä terveyden ja hyvinvoinnin palveluinnovaatiot. Oamkin LABit ovat osa Oulun alueen yhteistä innovaatioympäristöä (engl. Oulu Innovation Alliance) (OIA 2016), joka on korkeakoulujen, VTT:n ja Oulun kaupungin alueellinen kokeilukulttuuria tukeva yhteistyömalli (vrt. Triple Helix Concept 2016).

LAB-malli on osoittautunut kiinnostavaksi konseptiksi niin kotimaassa kuin kansainvälisesti. Suomessa mallia hyödynnetään Oulun lisäksi Jyväskylässä ja Ylivieskassa. Lisäksi kansainväliset kumppanimme kouluttavat uusia osaajia LAB-mallia hyödyntäen Japanissa (Global LAB Sendai) sekä Alankomaissa (Groningen Game LAB). Romaniaan avataan lokakuussa 2016 Timisoara Game LAB.

Toistuvilla kokeiluilla opiskelijalähtöisiin oppimismenetelmiin

LAB-mallin oppimismenetelmiä on kehitetty erilaisten kokeilujen kautta. Malliin kuuluu olennaisena osana jatkuvan kehittämisen sykli, jota myös opiskelijat hyödyntävät suunnitellessaan ratkaisuja tarjottuihin todellisiin ongelmiin. Kehitämme toimintaa kuten opetamme, syklisesti kokeillen ja asiakaslähtöisesti. Oppimismenetelmien kehittämisen kokeiluihin osallistuvat henkilökunnan lisäksi myös opiskelijat. Jokainen LAB toteuttaa osana normaalia opetustoimintaa itsenäisiä opetusmenetelmien kehittämiskokeiluja, jotka pohjautuvat säännöllisten opiskelijakyselyiden kautta kerättävään palautetteeseen. Kehittämisen kautta saatuja kokemuksia ja parempia menetelmiä jaetaan ja sovelletaan LABien välillä.

Olemme tunnistaneet yhteisiä teemoja ja sisältöjä, jotka ilmenevät oppimisprosessin tietyissä vaiheissa kaikissa LABeissa. Näiden perusteella olemme kehittäneet menetelmiä, joita voi hyödyntää erilaisten opiskelijaryhmien kanssa. Jokaisen oppijan, tiimin ja ryhmän erilaisuus tuo mielenkiintoisen haasteen opettajan työhön. Kussakin tiimissä on erilainen ryhmädynamiikka. Aidosti opiskelijalähtöiseen oppimiseen tulee löytää ainutkertaisia ratkaisuja. Siksi opiskelijoiden antama jokapäiväinen palaute opetustilanteissa on erittäin tärkeää. Innostuneet opiskelijat ovat paras palaute menetelmistä ja oppimisesta. Opiskelijat antavat myös rohkeasti palautetta sekä sanallisesti että kehonkielellään sellaisista menetelmistä, jotka eivät heidän mielestään palvele oppimista parhaalla tavalla. Palautteen antamisen ja saamisen kehittämiseksi aiomme kokeilla jatkuvan palautteen keräämistä ryhmässä, jossa on edustus jokaisesta Oamkin LABista.

Kokeilujen kannalta Oamk LABien koulutuskokonaisuudet tarjoavat hyvän ympäristön oppimismenetelmien kokeiluun ja LAB-malliin kouluttautumiseen. Eri toimialojen tarpeita palvelevat uudet oppimismenetelmät hiotaan kussakin LABissa kokeilujen kautta. Usein kehittämiskokeilun toteutukseen osallistuu opiskelijoiden lisäksi myös toimialan ammattilaisia esimerkiksi tulevan asiakkaan roolissa. Kehittämiskokeilua käynnistettäessä ei välttämättä tiedetä tarkkaa lopputulosta, vaan kokeilu etenee vaiheittain. LAB-mallin ryhmissä on yleensä korkeintaan 40 opiskelijaa, jotta kokeiluihin löytyy joustavasti sopivan kokoisia ryhmiä.

Rohkeuden ja uskalluksen kulttuurin luominen luo perustan oppimiselle

LAB-mallin arvot, toisesta välittäminen ja keskinäinen luottamus, näkyvät yhteisinä toimintatapoina. Yleensä ulkopuolelta määritellyt säännöt, joiden tarkoitusta ei ymmärretä, synnyttävät turhautumista. Siksi LAB-opiskelijoille ei kerrota sääntöjä, vaan määritellään yhdessä hyvät teot, joita toteutetaan jokaisena päivänä. Tällöin toivottu tapa toimia on määritelty positiivisena toimintana eikä kieltoina. Hyvistä ja toivotuista teoista on helppoa puhua yhdessä positiivista toimintakulttuuria vahvistaen.

Koulutusalalla ajatellaan yleisesti kilpailullisuuden olevan rohkeutta ja uskallusta vähentävä tekijä, mutta LAB-mallin oppimisessa se on nähty oppimista tukevana tekijänä. Kilpailu tapahtuu tiimien tuottamien konseptien ja ratkaisujen välillä, kun pyritään selvittämään parhaat ratkaisuideat, perustelut, tarinat ja liiketoimintamallit. Tämän kilpailullisuuden taustalla on ystävällisen kilpailun (vrt. Lazega, Bar-Hen, Barbillon & Donnet 2016) kulttuuri, jossa kilpailu tai häviäminen eivät luo epäonnistumisen vaan onnistumisen tunteen. Kilpailu ei ole hetkellistä, vaan sen on prosessi, jossa kilpailun mukanaan tuoma jännitys muuttuu positiiviseksi tunteeksi ja opiskelijoiden vahvuudeksi. Opiskelijat oppivat, että se vahvistaa heidän osaamistaan. Onnistuminen tai epäonnistuminen on koko tiimin ja koko LABin opiskelijaryhmän asia, koska oppiminen jaetaan rakentavalla tavalla kaikkien kesken. Ystävällisen kilpailun kulttuuri on kaikkien LAB-mallilla opiskelevien etu ja yhteinen päämäärä, koska sen ansiosta opiskelijat ymmärtävät pääsevänsä motivoituneeseen tiimiin kehittämään asiantuntija-arvioitua markkinakelpoista ratkaisua.

Tunteiden ilmaiseminen on toivottua ja sen tärkeydestä puhutaan yhdessä; tunteet ovat aina välittämisen merkki. Opiskelijat kokevat, että heidän teoillaan tai tekemättä jättämisillään, oppimisellaan ja toisten kanssa toimimisellaan on aidosti merkitystä ja siitä ollaan kiinnostuneita. Pahinta on välinpitämättömyyden harmaa mitättömyys; “ihan kiva” on kielletty palaute. Aitojen ja asianmukaisten tunteiden ilmaiseminen tukee uteliaisuutta ja innostusta. Tunteiden välittäminen liittyy myös palautteen antamiseen ja saamiseen. Opiskelijoiden ja myös opettajien on pyrittävä tunnistamaan, oppimaan ja puhumaan virheistään.

Eräänä tavoitteena on opettaa opiskelijoista toisiaan arvostavia, vahvoja tiimityöntekijöitä, mihin roolimallin antaa myös Oamkin LABien opettajatiimi. Opettajan valmentava rooli LAB-mallissa poikkeaa selvästi ns. perinteisestä luokkahuoneopetuksesta, joten opettajien on hyvä päästä kokeilemaan uusia työskentelytapoja ennen sitoutumista mukaan valmentajaksi. Jokaiselle kiinnostuneelle opettajalle tarjotaan tiimeissä tapahtuvaa koulutusta oppimismallin tavoitteisiin ja toimintatapoihin tutustumiseen. Tämän koulutuksen tärkein tavoite on oman opettajuuden reflektointi suhteessa LAB-koulutusmalliin muun muassa konkreettisten opetustehtävien, kokeilujen ja kokemuksien jakamisen avulla. Olemme havainneet koulutuksen kokeilevan ilmapiirin, opettamisen vapauden ja haastavien projektien antavan realistisen kuvan mallin soveltuvuudesta kunkin omalle opettajuudelle. Useimmille LAB-mallissa mukana oleville henkilökunnan jäsenille tällaisesta työskentelystä opiskelijoiden kanssa on tullut ilo, jopa intohimo.

Rohkeutta ja uskallusta tukevia toimintatapoja LAB-mallissa ovat muiden muassa projekteihin perustuva tekemisen kautta oppiminen, erilaiset tavat tarjota oppimisen sisällöt, verkostoitunut työskentelytapa (Heikkinen, Seppänen & Isokangas 2015) sekä monipuoliset arviointimenetelmät. Oppiminen rakennetaan yhteisönä, jossa jokaisella on vastuu omasta ja myös toisten oppimisesta. Tämän vuoksi arvioinnin menetelminä käytetään erilaisia itse-, vertais- ja asiantuntija-arviointeja, tiimin sisäisiä ja LABien vastuuopettajien sekä opettajavalmentajien antamia arviointeja. LAB-mallissa oppimisen ja arvioinnin lähtökohtana ovat opiskelijan itsensä asettamat tavoitteet, joita tarkastellaan myös suhteessa opiskelijatiimiin. Opetussuunnitelma muokkautuu kohti opiskelijan tavoitteita, ei toisin päin.

Mitä kokeilumme on tuottanut Oamkissa?

Oamkin LAB-mallin yhteisten arvojen, välittämisen ja luottamuksen kautta on syntynyt ilmapiiri, jossa opiskelijat kokeilevat ja heittäytyvät haastamaan itsensä ja toisensa uudella tavalla. Tällaisen oppimiskulttuurin luominen on edellyttänyt mukana olevilta opettajilta omien työskentelytapojen ja ammatillisen identiteetin arviointia.

LAB-mallin toteuttaminen edellyttää lupaa ja rohkeutta kokeilla, yrittää, erehtyä ja oppia, sekä luottamuksen rakentamista kaikilla tasoilla.

LAB-mallin toimintaa kehittävä opettajatiimi on työskennellyt pitkäjänteisesti ymmärtääkseen mikä oppimisessa on 2000-luvulla keskeistä ja kuinka sitä käytännössä ohjataan. LAB-mallin kehittäminen on vaatinut jatkuvaa vuoropuhelua organisaation sisällä sekä sidosryhmien kanssa. LAB-mallin toteuttaminen edellyttää lupaa ja rohkeutta kokeilla, yrittää, erehtyä ja oppia, sekä luottamuksen rakentamista kaikilla tasoilla. Kokeilukulttuurin myötä syntynyt LAB-malli ja siitä saatu innostava palaute opiskelijoilta, Oulun ammattikorkeakoulun henkilöstöltä, muilta korkeakouluilta ja erityisesti työelämän sidosryhmiltä antaa motivaatiota jatkaa samaan suuntaan kokeilujen tiellä.


Ulla-Maija Seppänen, TtM, lehtori, Oulun ammattikorkeakoulu, ulla-maija.seppanen(at)oamk.fi
Kari-Pekka Heikkinen, DI, lehtori, Oulun ammattikorkeakoulu, kari-pekka.heikkinen(at)oamk.fi
Jussi Haukkamaa, TaM, lehtori, Oulun ammattikorkeakoulu, jussi.haukkamaa(at)oamk.fi


Ananiadou, K. &  Claro, M. 2009. 21st Century Skills and competences for new millennium learners in OECD countries. OECD Education Working Papers. 2009 (41), 33.

Binkley, M., Erstad, O., Herman, J., Raizen, S., Ripley, M., Miller-Ricci, M., & Rumble, M. (2012). Defining twenty-first century skills. In P. Griffin, B. McGaw, & E. Care (Eds.), Assessment and teaching of 21st century skills (pp. 17-66). Netherlands: Springer.

Bull, C. and Whittle, J. 2014. Supporting Reflective Practice in Software Engineering Education through a Studio­based Approach. IEEE Software 2014, Vol 31, No. 4, pp 44­50.

Burkhardt, G., Monsour, M., Valdez, G., Gunn, C., Dawson, M., Lemke, C. & Martin, C. (n.d.). 2003. EnGauge 21st Century Skills – NCREL. Haettu 1.10.2016 osoitteesta http://pict.sdsu.edu/engauge21st.pdf

BusinessOulu. 2016. Haettu 1.10.2016 osoitteesta http://www.businessoulu.com/fi/businessoulu/innovaatioymparistot.html

Dede, C, 2009. Comparing Frameworks for “21st Century Skills”. Harvard Graduate School of Education. Haettu 1.10.2016 osoitteesta http://citeseerx.ist.psu.edu/viewdoc/download?doi=

Heikkinen, K.-P. 2014. Perusteet LAB-oppimismallista. LAB-oppimismallin lyhyt kuvaus. ePooki. Oulun ammattikorkeakoulun tutkimus- ja kehitystyön julkaisut 19.

Heikkinen, K­.-P., Seppänen, U.-­M. & Isokangas J. (2015) ”LAB studio model: Developing external networks for learning entrepreneurship in higher education”, Education in the North, Vol 22 (Special Issue), pp 49­73.

Lazega E., Bar-Hen A., Barbillon,P. & Donnet S. 2016. Effects of competition on collective learning in advice networks. Social Networks 47, pp. 1–14.

Mann S. & Robinson A. 2009. Boredom in the lecture theatre: an investigation into the contributors, moderators and outcomes of boredom amongst university students. British Educational Research Journal, 2009, 35 (2), pp. 243-258.

Oamk LABs. 2016. Haettu 1.10.2016 osoitteesta http://www.oamklabs.fi.

OIA, Oulu Innovation Alliance. 2016. Haettu 1.10.2016 osoitteesta http://www.ouluinnovationalliance.fi/

P21 Common Core Toolkit. A Guide to Aligning the Common Core State Standards with the Framework for 21st Century Skills [PDF]. 2011. Partnership for 21st century skills. Haettu 1.10.2016 osoitteesta http://www.p21.org

Kilpi, E. 2016. Perspectives on new work – Exploring emerging conceptualizations. Sitra Studies 114.

Mäntylä, J.-M. 2016. 100 suurinta IT-yritystä. Talouselämä-lehti, 27/2016, ss. 37-41.

Triple Helix Concept. 2016. Haettu 1.10.2016 osoitteesta http://triplehelix.stanford.edu/3helix_concept

Tze, V.M.C., Daniels, L.M. & Klassen, R.M. 2016. Evaluating the Relationship Between Boredom and Academic Outcomes: A Meta-Analysis. Educational Psychology Review. 28: 119. doi:10.1007/s10648-015-9301-y

Ahonen, pääkuva

Mission Possible: Student Integration through Involvement


The purpose of the paper is to introduce the experimental Mission Possible pilot project, a student integration through involvement model at Lahti University of Applied Sciences (Lahti UAS). It was carried out in January 2016 by incoming International Trade Degree Programme (KVK) and International Business Degree Programme (IBU) students as their orientation week program. Instead of traditional day-long information lectures lasting for one week, the newbie students were put to work on their first group project already on the third day of the start of their studies. The project involved setting up and running a new venture. The results of this model provide strong support for using it in the future and perhaps with groups of newbie students in other university of applied sciences, too.

Mission Possible – the Idea

The Mission Possible pilot project was implemented to encourage student integration through involvement, in a practical sense. The idea of the project was to have the students to experience actual business operations right from the word go – thus, giving them an opportunity to experience real-life business in practice. The project aimed to help students, coming from two different degree programs and from different countries, to become acquainted with each other, to encourage social networking between the students in order to help them develop a closer connection to each other, and to support the integration of these students into their business studies. In addition, the students would learn team work skills, working in a multicultural environment, and learn the basics of start-up development.

The KVK and IBU students were expected to complete their project so as to be ready for the one-day DuuniExpo Networking and Career Fair, held in Lahti, on January 20, 2016. After preparatory lectures facilitated by the authors of the paper, the students had exactly one week’s time to plan, prepare, and implement their project.

DuuniExpo is a yearly-held fair that gathers students of all faculties at Lahti UAS and recruiters of the Lahti region together. Attendance at the fair differs from one year to the next with average attendance being 5,000 people. DuuniExpo – created, organized, and implemented by Lahti University of Applied Sciences’ students – is open to everyone. (DuuniExpo 2016.)

Mission Possible Practicalities

The project began with the presentation of the Mission Possible pilot project idea and the implementation phases of the project to the students. This was followed by lectures in business model principles (Osterwalder & Pigneur 2013), teamwork and team working and culture-related practices (Hofstede & Hofstede & Minkov 2010, Loughborough University 2016, Tuckman 1965). The sixty-nine students were divided into ten groups of six to eight students per group. Each group had both Finnish and foreign students. This ensured that all students became acquainted with each other as well as with each other’s cultures.

After getting to know each other via group discussion, based on pre-arranged discussion questions, the students then went on to brainstorm what product or service they would create and sell at the DuuniExpo Fair. The product or service could be anything legally approved of – either tangible or intangible. The idea of the chosen product or service was presented to the rest of the class the following day, thus avoiding overlapping of product or service ideas. There were four check points all-in-all ensuring the progression of the project and development of the business ideas. The final check point was the feedback-for-the-project check point.

Each group was given 50 euros as their budget to cover the expenses incurred in the implementation of their product or service. After the DuuniExpo event, the groups were required to pay the 50 euros back. Any profit they attained from their sales they were allowed to keep and divide amongst their group members. Results of each group’s earnings were presented the day after the DuuniExpo Fair. The group earning the most profit was declared the winning team and received their prizes.

The groups, besides working on creating their actual product or service, were also responsible for setting up and clearing their stands at the fair, arranging transportation of their products/equipment to and from the DuuniExpo, managing their cash flow, marketing/advertising their stand/products/service, and arranging the day schedule, time-wise, for each group member.

The ten groups came up with the following products and services: homemade muffins, cake, hot dogs, candy; hot and cold beverages; circulating coffee cart; handmade backpack bags, cell phone covers, candles and postcards; picture-taking booth; discount and offer coupons and raffle tickets.

Ahonen, kuva 2

Even though the prices of the products or services were quite cheap, the students earned, in total, a profit of 1,778 euros. The winning group sold raffle tickets – where each raffle ticket buyer won a prize donated by local businesses. The winning group donated their 468-euro profit to a charity cause.

Students’ Experience

Feedback for the Mission Possible project was collected by the two project facilitators after the DuuniExpo Fair. Feedback was collected with feedback forms. The forms were handed-out to the students and collected after completion at the beginning of the final day of the project, before the winning team/award was announced. Of the 69 students, fifty-five (79.7%) submitted a completed feedback form. The results were analyzed using Excel to find common themes. According to the feedback, all the students were extremely satisfied with the Mission Possible project. Also, they expressed how exciting and educative it was to really learn what the business concept means for real. Furthermore, they emphasized how well they got to know each other throughout the implementation of this project. Completing the project in multicultural groups helped the students acquire skills in team working as well as cultural skills. In addition, the students learned to make good use of the strengths of each team member. Other acquired skills included: leadership, socializing, time-management, entrepreneurship, sales and marketing, communication, and problem-solving skills.

Ahonen, kuva 1

Development suggestions were also given for the Mission Possible project. First, the length of the project, time-wise, was commented on. Some students expressed that they would have needed more time for this project; one student felt that this one week was too long. On the other hand, there were some students who felt that this one week time was a good thing because they had to work more intensively due to the shortage of time. Second, working in a multicultural group seemed to be a bit challenging for some students. The two areas where conflicting situations arose related to differences in the concept of time as well as communication practices. Third, students expressed the need for more information and tips on selling and marketing of products or services. This also included the need for more information on how to price products or services and how to approach customers. Fourth, although great care was given to eliminate duplicate product or service ideas, some students criticized that overlapping of products or services cut their profit. And finally, many students wished for more information about the other companies’ stands at the DuuniExpo Fair as well as information on what these companies were selling.

Development Proposals

More information relating to cultural differences is needed with future Mission Possible projects. The areas of focus should include not only the differences but the similarities as well. This would then equip the students with the needed skills when facing cultural differences in behaviour and practices.

With future Mission Possible groups it is important to have clearer instructions regarding money aspects, i.e., the 50 euro loan – what it is to be used for, are students allowed to use their own money for the project, as well as the risks involved – thus ensuring that all groups play by the same rules.

Selling and marketing need to be focused on more with future Mission Possible group projects. Students need to have information, i.e., tools and methods, on how to create ideas, market their product or service, how to approach Finnish customers, and how to price products or services to be more buyer-and-profit friendly. Students also need to be informed about other companies, products and services at the DuuniExpo – thus helping them create something different. Overlapping of products or services needs to be more strictly controlled.


All-in-all the experimental Mission Possible pilot project can be said to be successful. The students were able to practice, in real-life, what their studies will be teaching them. The execution of the project was interesting for both the students as well as the project facilitators. With the help of the project, the students coming from two different degree programs, acquired skills that are beneficial in their studies as well as the business world. Furthermore, this project helped the students integrate more quickly into their business studies. This type of student integration through involvement model might be worth trying in other universities of applied sciences.


Tarja (Terry) Ahonen, Senior Lecturer, Lahti University of Applied Sciences Ltd, tarja.ahonen(at)lamk.fi
Sami Heikkinen, Senior Lecturer, Lahti University of Applied Sciences Ltd, sami.heikkinen(at)lamk.fi

Hofstede, G. H., Hofstede, G. J., & Minkov, M. 2010. Cultures and Organizations: Software of the Mind: Intercultural cooperation and its importance for survival. 3. revised edition. New York: McGraw Hill.

Loughborough University. 2016. Working in Groups. Referenced 2 October 2016. Available on database: www.lboro.ac.uk/media/wwwlboroacuk/content/library/downloads/advicesheets/groups.pdf.

Osterwalder, A. & Pigneur, Y. 2013. Business Model Generation: A Handbook for Visionaries, Game Changers, and Challengers. New York: John Wiley & Sons.

Tuckman, B. 1965. Developmental sequence in small groups. Psychological Bulletin 63, 384-399. The article was reprinted in Group Facilitation: A Research and Applications Journal, Number 3, Spring 2001.


Kokeilukulttuuri trimmaa median oppimisympäristöjä

Älä ole nössö! Parempi överit kuin vajarit! Kun kokeillaan uusia oppimisympäristöjä, ei saa olla herkkähipiäinen, sillä uudet toimintatavat haastavat niin opettajan osaamisen kuin totutut roolit. Hyvällä tuella ja yhteistoiminnalla oppimisympäristöjen kokeilut tuntuvat turvallisilta toteuttaa ja kokeilukulttuuri on mahdollista juurruttaa osaksi oppimisympäristöjen toimintatapoja.

Case Projektikahvila

Turun ammattikorkeakoulun Lemminkäisenkadun kampuksen kahvilan tiloissa käy kuhina syyskuun toisena perjantai-aamuna. Opintojaan aloittavien lisäksi kahvilan pöydässä istuu media-alan opetushenkilöstöä ja opiskelijoita keskustelemassa opiskelijoiden projekteista. Media-alan opettajista tällä kertaa läsnä on Markus Hatakka, joka kuuntelee tarkalla korvalla erikoistumisalan mediatuotannon opiskelija Essi Vesalan, koontia kesän festarituotannosta ja mainonnan suunnittelun opiskelijoiden Sanni Immosen ja Mira Pitkäsen verkkosivusuunnittelun haasteita. Muut opiskelijat auttavat bannerin ja kuvakokojen sommittelussa. Sitten siirrytään seuraavan opiskelijaparin projektiin. Projektikahvilan kahden tunnin sessio on nopeasti ohi. Uudet opiskelijat tulevat seuraavaan Projektikahvilaan.

Projektikahvilassa media-alan opettajat ja henkilöstö ohjaavat opiskelijoiden omia projekteja: asiakkaille tehtävää palvelutoimintaa tai opiskelijoiden omia projekteja. Kahvilassa annetaan palautetta ja keskustellaan projektista sen eri vaiheissa.

Projektien aiheet kattavat käytännössä koko media-alan koulutuksen kirjon aina taittotöistä ja visuaalisesta suunnittelusta käsikirjoituksiin, sosiaalisen median kampanjoihin, journalistisiin teoksiin, tapahtumien tuotantoihin ja luovan sisällön kehittämiseen. Mukana ovat niin animaation, elokuvan, journalismin, tuotannon, mainonnan kuin yhteisöviestinnänkin opiskelijat.

Projektikahvilan toimintamalli ohjaa ja rohkaisee opiskelijoita itsenäisiin projekteihin ja omaehtoiseen työskentelyyn. Samalla kehittyvät projektinhallinnan taidot, itsenäinen työskentelyote sekä työelämä- ja yrittäjyystaidot. Media-alan koulutuksen eri erikoistumisalojen opiskelijoiden samanaikainen osallistuminen kahvilan tapaamiskertoihin tuo projekteista käytäviin keskusteluihin uusia ja erilaisia näkökulmia. Opiskelijat antavat palautetta ja kyselevät toisiltaan vinkkejä.

Toimintamalli ja yhteistyö noudattavat Turun ammattikorkeakoulun media-alan opetussuunnitelmaa, jossa projektiopintojen osuus on kasvanut ja opintojaksoja suoritetaan yhdessä yli erikoistumisalojen uutta luoden ja kokeillen. Opetussuunnitelma on laadittu Turun ammattikorkeakoulun Innopedan toimintamallien ja ohjauksen mukaisesti.

Case Meedio

Maanantaina klo 10 Meedion opiskelijat kokoontuvat viikkopalaveriin. Opettaja Jussi Kokkolan ohjauksessa Meediossa on kerrallaan ryhmä media-alan opiskelijoita suorittamassa yhteisöviestinnän harjoitteluja ja samalla tuottamassa, julkaisemassa ja jakamassa sisältöjä Taideakatemian ulkoisen viestinnän kanavissa. Turun ammattikorkeakoulun Taideakatemian ulkoinen viestintä rakentuu Meedio-oppimisympäristön varaan.

Meedion viikkopalaveri
Meedion viikkopalaveri

Opiskelijoita kannustetaan kokeilemaan rajojaan: jos et ole tehnyt vielä somekamppista, niin nyt teet. Kokkola painottaa kokeilukulttuuriin rohkaisemisessa oppimisympäristön rakenteita: kun toiminnalla on selkeät raamit, rakenne ja roolit, opiskelijat uskaltava opettajan ohjauksessa tehdä rohkeitakin kokeiluja. Kokkola piirtää kuvaa eräänlaisesta positiivisesta hulluudesta ja opiskelijoiden rohkeasta ohjaamisesta kohti epämukavuusalueita. Tärkeätä on, ettei ole liiallinen kiire – kaiken tehdyn ja uuden kokeilun analysoimiseen ja purkamiseen yhdessä tulee jäädä aikaa.

Projektikahvila ja Meedio edustavat media-alan oppimisympäristöjä, joiden toimintaperiaate perustuu vahvasti kokeilukulttuuriin. Opiskelijoita kannustetaan kokeilemaan rohkeasti uusia tapoja tehdä. Opiskelija kokeilee uutta opettajien ohjauksessa niin, että kukaan ei etukäteen tiedä lopputulosta tarkasti.

Kohti tulevaisuuden työelämää

Työelämä 2020 -hankkeessa teetetyn kyselyn mukaan suurin osa työntekijöistä (87 %) kertoo, ettei omalla työpaikalla ole lainkaan kokeiltu uusia työskentelytapoja, vaikka työnantaja suhtautuu myönteisesti työtapojen kehittämiseen sekä henkilöstön aloitteellisuuteen. Tarvitaan lisää uskallusta ja työkaluja ideoiden eteenpäin viemiseksi. (Työelämä 2020 hanke.)

Miten luomme oppimisympäristöjä, joissa opiskelijat oppivat olemaan aktiivisia toimijoita kokeilukulttuurin arjessa ja toisaalta myös sietämään epävarmuutta? Kokeilukulttuuri ei aina ole auvoista, eikä mutkatonta tietä onnistumiseen usein löydy ensimmäisellä yrittämällä. Kun lopputulos, toimintamallit tai suunnitelmat ovat jatkuvan muutoksen kourissa, syntyy helposti epävarmuutta, joka saattaa synnyttää torjuntaa. Miksei tehdä niin kuin aikaisemminkin, eikö se riitä? Median oppimisympäristökokeiluille on kysyntää, sillä ala on myllerryksessä ja monipuoliselle osaamiselle on entistä enemmän tilausta.

Projektikahvilan opiskelijapalautteessa on ollut myös kritiikkiä uutta toimintamallia kohtaan – osa opiskelijoista on aikaisemmin saanut projektipisteet vähemmällä vaivalla ja kokee siten uuden toimintamallin aiempaa työläämmäksi. Toisaalta haaste on myös moniammatillinen toiminta, miten keskustella ja ottaa kantaa toisen erikoistumisalan opiskelijan projektiin.

Sitran Kohti kokeilukulttuuria -hankkeessa (Kohti kokeilukulttuuria, Sitra 2014/77) kysyttiin, voisiko sanonnan ”Hyvin suunniteltu on jo puoliksi tehty” kääntää muotoon ”Kerran kokeiltu on jo hyvin suunniteltu”? Testaamalla saadaan nopeasti palautetta ja kokemuksia jonkin idean toimivuudesta. On kuitenkin oltava lähdekriittinen yksittäisten tapausten ja henkilöiden palautteen suhteen. Uusia oppimisympäristöjä testatessa on järkevää edetä pienemmistä ryhmistä suurempiin kokonaisuuksiin, mutta yhden opiskelijaryhmän toiminta ja onnistumiset eivät vielä takaa onnistumisia kaikkien ryhmien kanssa.

Jotta kokeilu voi aidosti kehittää ja ravistella totuttuja toimintatapoja, on luotava ja laajennettava verkostoja. Monialaisessa yhteistyössä ja yhteisessä keskustelussa törmätään intressiristiriitoihin, joiden käsittely vaatii erityisosaamista. Sitran aineiston perusteella kokeilukulttuurille ominaisia piirteitä olivat innostuksen ja tekemisen meiningin levittäminen. (Kohti kokeilukulttuuria, Sitra 2014/77.)

Rohkeutta on tunnustaa epävarmuutensa

Kun opetus ja oppiminen perustuvat kokeiluihin, on oltava sijaa myös epäonnistumisille. Näin ollen opiskelijan osaamisen arviointi ei voi perustua pelkästään lopputulokseen tai valmiiseen tuotokseen, vaan arviointi painottuu prosessiin. Tavoitteena on yhteinen oppiminen ryhmässä. Opiskelija analysoi niin prosessia kuin lopputulosta, jolloin oppiminen perustuu siihen, mitä kokeilusta syntyi, mitä opiskelija itse oppi, ja mitä muut opiskelijat oppivat tehdystä työstä ja prosessista.

Projektikahvilassa ja Meediossa korostuvat opiskelijoiden yksilöllisen kehittymisen mahdollisuudet ja itsenäinen työskentelyote. Opiskelijoita kannustetaan testaamaan uusia toimintatapoja, ja kokeilun arvokkuutta korostetaan omista lähtökohdista. Kokeilu ei välttämättä ole alalla uusinta uutta, mutta se on opiskelijalle uusi tapa toimia. Näin opiskelija oppii kehittämään toimintatapoja, ja siten luodaan pohjaa myöhemmin työelämässä tehtäville kokeiluille ja rohkeudelle kokeilla uutta.

Projektikahvilassa eri alojen opiskelijat keskustelevat omista projekteistaan.

Mikä on epäonnistuminen? Miten epäonnistumisia käsitellään? Tärkeää on asettaa epäonnistuminen oikeisiin mittasuhteisiin: kun tekee vaikkapa logosuunnittelua ensimmäistä kertaa, ei voi odottaa samanlaista lopputulosta kuin alan konkarilta. Tunnustusta tulee saada myös mallikkaista kohtaamisista asiakkaan kanssa, hyvin hoidetusta projektista ja rohkeista ideoista.

Toisaalta myös opettajan täytyy voida tunnustaa, ettei aina osaa sanoa, mikä olisi parempi ratkaisu. Projektikahvilassa ja Meediossa opettajat törmäävät väistämättä projekteihin, joiden sisältö ei ole oman ammatillisen osaamisen keskiössä, ja siltikin opiskelijan projekti on ohjattavissa sekä arvioitavissa.

Kun opetus ja oppiminen perustuvat kokeiluihin, on oltava sijaa epäonnistumisille.

Kokeiluissa on muuttujia, joita ei ole voitu tai osattu ennakoida, ja hankalat tilanteet aiheuttavat kritiikkiä. On siis hyvä valmistautua kohtaamaan kriittisiäkin keskusteluja, ja siksi kokemusten purkaminen on tärkeä osa kokeilukulttuuria. Niin Meediossa kuin Projektikahvilassa varataan aikaa prosessien käsittelyyn. Opettajan tulee uskaltaa kysyä, miten hänen omaa toimintaansa voisi vielä suunnata toisin. Kokeiluissa kaikki kokeilun osapuolet tarvitsevat motivaatiota, kannustusta, palautetta ja tukea.

Kokeilukulttuurin perustuvien oppimisympäristöjen osallistujilta vaaditaan rohkeutta kehittää ympäristöä, jossa opiskelijat ja opettajat kokeilevat ennakkoluulottomalla asenteella uutta ilman varmuutta onnistumisesta. Epävarmuuden sietäminen on kaikille osallistujille ehdoton vaatimus. Edellytyksenä on, että selkeästi viestitään kaikille osapuolille, että kyse on kokeilusta, jossa on epävarmuustekijöitä. Tarvitaan myös avointa ilmapiiriä, jotta pysytään kehittämään luovia ratkaisuja. Avoin, positiivinen ilmapiiri kannustaa hyötymään kokeilusta täysillä. Projektikahvilassa ja Meediossa on huomattu, että sopivaan ilmapiiriin vaikuttaa opettajien joustava asenne, huumori ja välitön suhtautuminen opiskelijoihin.


Milla Järvipetäjä, YTM, projektipäällikkö, Turku AMK, milla.jarvipetaja(at)turkuamk.fi
Samuel Raunio, FM, lehtori, Turku AMK, samuel.raunio(at)turkuamk.fi
Arja Tulonen, TaM, koulutus- ja tutkimuspäällikkö, Turku AMK, arja.tulonen(at)turkuamk.fi


Työelämä 2020: Suomalainen työelämä kannustaa kokeilevaan kulttuuriin – ideoinnin palkitsemisessa vielä parannettavaa. Haettu 5.9.2016 osoitteesta http://www.tyoelama2020.fi/uutishuone/uutiset/suomalainen_tyoelama_kannustaa_kokeilevaan_kulttuuriin_ideoinnin_palkitsemisessa_viela_parannettavaa.2692.news

Annukka Berg, Mikael Hildén ja Kirsi Lahti: Kohti kokeilukulttuuria. Analyysi Jyväskylän resurssiviisaista kokeiluista strategisen kehittämisen työkaluina. 2014/ Sitra 77. Haettu 5.9.2016 osoitteesta Innopeda (http://www.turkuamk.fi/fi/turun-amk/exc/innopeda-exc/)

Martikainen, pääkuva

Kokeilukulttuurilla uutta osaamista koulutusorganisaatioiden turvallisuusjohtamiseen

Suuressa osassa suomalaisia koulutusorganisaatioita on syntymässä turvallisuuden kehittämistä tukeva, turvallisuusmyönteinen ilmapiiri: ne haluavat tehdä työtä turvallisen opiskelu- ja työympäristön mahdollistamiseksi. Oppilaitosten ja korkeakoulujen turvallisuustyö on hyvä mieltää kokonaisuutena, joka näkyy läpi kaikessa toiminnassa. Se linkittyy erityisesti johtamiseen, jonka kautta syntyvät myös vastuut ja velvoitteet. Se edellyttää myös turvallisuusosaamista, jonka vuoksi tarvitaan henkilöstön, oppilaiden ja opiskelijoiden koulutusta sekä harjoituksien järjestämistä. Vasta aito, koeteltu kyky ja valmius toimia kaikissa tilanteissa mahdollistavat toiminnan jatkuvuuden normaaliolojen häiriötilanteissa, kuten myös poikkeusoloissa.  (Martikainen & Ranta 2014, 34.)

Kokeilumme turvallisuusjohtamisen kehittämiseksi käynnistyi tavoitteiden asettamisen kautta. Toivoimme kumppaniksemme kuntaa, joilla olisi halu lähteä kehittämään koulujensa turvallisuustyötä kohti kokonaisvaltaista turvallisuusjohtamista. Otimme yhteyttä erään eteläsuomalaisen sivistystoimen johtoon maaliskuussa 2016 ja teimme ehdotuksen peruskoulujen turvallisuusjohtamisen kehittämistä koskevasta kokeilusta. Turvallisuusjohtamisen toteuttaminen edellyttää kokemuksemme mukaan turvallisuustyön päämäärätietoista johtamista, jota tukemaan tarvitaan erilaisia ohjelmia asetettujen tavoitteiden saavuttamiseksi. Ajatuksena oli siksi tarjota kohteelle mahdollisimman kevyellä panoksella konkreettista apua kaikkien kunnan peruskoulujen kokonaisvaltaisen turvallisuusjohtamisen kehittämiseksi. Kokeilussa asetettiin kolme keskeistä tavoitetta paitsi auditoinnin onnistumiseksi niin myös lisäarvon tuottamiseksi auditoinnin kohteelle. Ehdotuksessa kuvattiin, mitä lisäarvoa hanke tuottaisi ja myös tarvittava aikaresurssi: tunti alkuhaastattelua varten sekä kolme tuntia itse auditointiin. Lisäksi tehtiin esitys auditointiin osallistujista. Kokeilu toteutettiin toukokuussa 2016.

Oppilaitosten ja korkeakoulujen turvallisuusjohtaminen vielä sirpaleista

”Otetaan käyttöön kokeilukulttuuri” on paitsi kehotus niin myös kädenosoitukseksi tulkittava ele valtiovallan toimesta myös meille, jotka haluamme kehittää oppilaitosten ja korkeakoulujen turvallisuutta kohti kokonaisvaltaista turvallisuusjohtamista. Reimanin ja Oedewaldin (2008, 435) mukaan turvallisuusjohtamisella tarkoitetaan pyrkimystä edistää hyvinvointia päämäärätietoisella, tavoitteellisella, pitkäjänteisellä johtamisella ja ohjelmallisella kehittämistyöllä. Suurta osaa viime vuosina toteutetuista koulutusorganisaatioiden turvallisuuden kehittämishankkeista näyttää piinaavan edelleen sirpaleisuus; saman asian tutkiminen aina uudestaan ilman, että turvallisuustyön vaikuttavuus ja kokonaisvaltaisuus olisivat selvästi kehittymässä. Tuoreen tutkimuksen mukaan peruskoulujen ja ammattikorkeakoulujen turvallisuustyö ei täytä vielä turvallisuusjohtamisen perusvaatimuksia (Martikainen 2016, 160).

Valtioneuvoston (2016) mukaan ”kokeiluilla tavoitellaan innovatiivisia ratkaisuja, parannetaan palveluita, edistetään omatoimisuutta ja yrittäjyyttä sekä vahvistetaan alueellista ja paikallista päätöksentekoa ja yhteistyötä kansalaislähtöisiä toimintatapoja hyödyntäen”. Kokeilukulttuurin lähtökohtaa voidaan hyvin soveltaa turvallisuuden kehittämiseksi. Idea kokeilulle perustui havaintoihimme, jotka syntyivät osana meidän auditoijina toimineiden tutkijoiden väitöstutkimuksiin liittyvää tiedonkeruuta. Tällöin auditoimme työparina noin 80 eri oppilaitosta ja korkeakoulua Tutor-arviointimallilla. Tässä prosessissa syntyi oivallus auditoinnin toteuttamiseksi yksittäisten koulujen sijasta sen tahon kanssa, jolla on lain suoma oikeus ja velvollisuus vastata turvallisuustyön kehittämisestä niin riittävien puitteiden kuin myös periaatteiden määrittämisen kautta. Käytännössä tämä tehtävä on kunnissa osoitettu sivistystoimille, opetusvirastoille tai kasvatus- ja opetustoimille. Korkeakoulujen osalta tällaista ohjausta ei ole juurikaan opetus- ja kulttuuriministeriön taholta lainsäädännön lisäksi, joten päätimme keskittyä tässä kokeilussamme peruskouluihin.

Yksittäisten koulujen mahdollisuudet lähteä kehittämään omaa turvallisuustoimintaansa kohti kokonaisvaltaisuutta ilman kunnan osoittamia linjauksia ja taloudellista tukea on havaintojemme mukaan mahdotonta. Pohdimme koulutusorganisaatioiden auditointitulosten äärellä, miten kuntatasolla sivistystoimeen, opetusvirastoon tai kasvatus- ja opetustoimeen toteutettu kokonaisturvallisuuden auditointimenettely voisi tässä kohtaa toimia. Päätimme kokeilla, voisiko auditointihavaintojemme ja -tulostemme perusteella syntynyt ymmärrys tuottaa nopeammin ja pienemmin resurssein tulosta, ja saada näin kunta koordinoimaan, ohjaamaan ja jalkauttamaan kokonaisvaltaista turvallisuusjohtamista oppilaitoksiin. Otimme yhteyttä erään eteläsuomalaisen sivistystoimen johtoon. Heille tarjoamamme auditointimenettely kehittämistoimenpiteineen oli toivottu lisä kiireiseen arkeen. Käytimme auditoinnissa paitsi Tutor-arviointimallia, niin myös Asteria, konsultoivan auditoinnin menetelmää.

Tutor ja Asteri kokeilukulttuurin välineinä

Tutor-arviointimalli on palkittu, Keski-Uudenmaan pelastuslaitoksen kehittämä malli turvallisuusjohtamisen arviointiin (Keski-Uudenmaan pelastuslaitos 2011, 2; STT Info. 2011). Vaikka malli on kehitetty pelastusviranomaisen käyttöön, se soveltuu kokemuksemme mukaan hyvin myös ulkopuolisen auditoijan tekemään kokonaisvaltaisen turvallisuusjohtamisen arviointiin.

Tutor-arviointia tehdään kahdeksalla eri osa-alueella: hallinnollisessa johtamisessa, toiminnallisissa riskeissä, vaatimusten täyttymisessä, turvallisuusdokumentaatiossa, kiinteistö-ja turvallisuustekniikassa, turvallisuuskoulutuksessa, turvallisuusviestinnässä sekä turvallisuusjohtamisen tuloksissa ja vaikutuksissa. Keskeiset teemat, toisin sanoen riskit, sidosryhmät, raportointi, mittaaminen ja jatkuva parantaminen, tulevat esiin kaikissa osa-alueissa. Turvallisuusjohtamisen taso saadaan keskiarvona kaikkien Tutorin osa-alueiden keskiarvioista. (Keski-Uudenmaan pelastuslaitos 2012.)

Asterin, konsultoivan auditoinnin menetelmässä käytetään kahta auditoijaa, jotta konsultointia ja auditoinnin tulosten kirjaamista voidaan tehdä samaan aikaan. Auditointia suunniteltaessa auditoijat ottavat huomioon mahdolliset negatiiviset asenteet ja miettivät jo etukäteen keinoja toteuttaa auditointia rakentavassa hengessä. Rehtorin tai toimitusjohtajan osallistuminen auditointiin on erittäin tärkeää sekä tulevaisuuden tavoitteiden asettamiselle että korjaavien toimien käynnistämiselle. Auditoitavan kohteen valmistautuminen auditointiin pidetään minimissä. Organisaatio ei tee itsearviointia yksin, vaan se tehdään auditoijien ohjauksessa. Auditoitavan kohteen edustajia kannustetaan ajattelemaan ääneen auditoinnin aikana. Tämä sekä nopeuttaa auditointia että auttaa saamaan selville, mikä auditoinnin kohdetta askarruttaa ja miten turvallisuusjohtaminen toteutetaan käytännössä. Näin myös auditoijat tunnistavat organisaation vahvuuksia ja kehittämiskohteita, jotka numeerisen auditointituloksen lisäksi tuodaan esille auditoinnin kohteelle. (Martikainen 2016, 113–116.)

Kokeilulle asetetut tavoitteet

Tavoitteet tälle kokeilulle asetettiin mahdollisimman konkreettisiksi. Ensimmäisenä tavoitteena oli päästä auditoimaan kokeilukulttuurin hengen mukaisesti matalalla kynnyksellä kunnan sivistystoimea useiden yksittäisten koulujen sijasta. Näin turvallisuusjohtamista tukevat kehittämistoimet kohdistuisivat kaikkiin kunnan peruskouluihin.  Toisena tavoitteena oli luoda ennakolta kattava, konkretiaa tuova ja keskustelua herättävä mallidokumentaatio auditointitilanteeseen kohdeorganisaatiota varten. Tällä tavoiteltiin Asterin idean mukaisesti luottamuksellista ja vuorovaikutteista ilmapiiriä. Mallidokumenttien avulla pyrittiin kuvaamaan aiemmissa auditoinneissa haasteellisiksi koettuja turvallisuuskäsitteitä, niiden merkityksiä ja sisältöjä. Esimerkkejä mallidokumenttien sisällöistä ovat organisaatioturvallisuus, turvallisuusperiaatteiden määrittäminen turvallisuuspolitiikassa, vaara, riski ja riskienhallinta, turvallisuuden raportointijärjestelmä, turvallisuuden sidosryhmien kuvaaminen tarpeiden ja odotusten näkökulmasta, proaktiivisen turvallisuusviestinnän toteuttaminen sekä riskilähtöisen turvallisuuskoulutuksen toteuttamisen malli. Kolmantena tavoitteena ja aiempiin auditointeihin verrattuna uutena elementtinä kokeiluun sisällytettiin ennen auditointia järjestettävä ryhmähaastattelu. Sen tavoitteena oli saada aikaan osallistujien luottamus ja mahdollistaa näin sujuva siirtyminen itse auditointiin.

Kokeilun tulokset rohkaisevia

Ensimmäinen tavoite turvallisuusjohtamisen auditoinnista kunnan sivistystoimeen toteutui, kuten myös se, että sivistystoimi sai auditointitulokset analysoitavakseen ja priorisoitavakseen jatkotoimenpiteitä varten.

Itse auditoinnissa käytetyt mallidokumentit palvelivat hyvin tehtäväänsä toisen tavoitteen mukaisesti. Auditointikysymyksissä keskeistä oli, että auditoitavat pystyvät vastaamaan luottaen siihen, että ovat ymmärtäneet kysymysten sisällöt oikein. Myös se, että kaikilla auditointiin osallistuville oli uuteen auditointiteemaan lähdettäessä yhteinen ymmärrys sen sisällöstä, vaatimuksista ja merkityksistä, siivitti ryhmän keskustelemaan viivytyksettä. Vilkkaat keskustelut läpi koko auditoinnin osoittivat, että aiemmin haasteelliseksi koetut, turvallisuusalalle ominaiset käsitteet ja merkitykset avautuivat auditoitaville hyvin.

Myös kolmas, ryhmähaastattelua koskeva tavoite saavutettiin. Auditointiin osallistuvat pääsivät jokainen tasapuolisesti kuvaamaan suhdettaan turvallisuuteen. Ryhmähaastattelussa syntyi oivallista, keskinäistä yhteistyötä kuvaavaa keskustelua tärkeiksi koetuista turvallisuustyön sisällöistä, tavoitteista ja odotuksista. Auditoijille ryhmähaastattelu mahdollisti ryhmään tutustumisen sekä antoi vahvistuksen sille, miten itse auditointitilanteessa eri auditointiteemoja tulisi painottaa. Auditoijat kykenivät myös tunnistamaan ennakolta auditointiin osallistuvien henkilöiden erilaisia rooleja ja henkilökohtaisia odotuksia. Näin kokeneet auditoijat saivat uusia eväitä kehittää omaa auditointitoimintaansa.


Tämä kokeilu turvallisuusjohtamisen kehittämiseksi kuntatasolla osoitti, että turvallisuustyötä voi ja pitää kehittää systemaattisesti. Tutor -arviointimalli soveltuu erinomaisesti auditoitavan kohteen turvallisuustyön nykytilan tunnistamiseen kuin myös systemaattisten, priorisoitujen kehittämistavoitteiden asettamiseen valitulle kehittämisjaksolle. Kokeilu mahdollistaa kohteelleen systemaattisen ja kustannustehokkaan polun turvallisuustyön kehittämiseksi. Se mahdollistaa myös keinot, joilla päästään pois sirpaleisesta, resurssipulasta kärsivästä oppilaitoskohtaisesta turvallisuustyöstä.

Tässä kokeilussa keskityttiin peruskouluihin. Tutkimustulokset osoittavat, että sama Tutor-arviointimalli toimii erinomaisesti myös ammattikorkeakoulujen turvallisuusjohtamisen kehittämistyössä antaen kohteelleen selkeät, systemaattiset ja lakisääteisten vaatimusten mukaiset kehittämistavoitteet. Olisi toivottavaa, että tästä auditointimenettelystä tulisi valtakunnallinen malli oppilaitosten, ammattikorkeakoulujen ja yliopistojen turvallisuusjohtamisen tueksi ja tasamitallisen turvallisuustyön kehittämisen mahdollistamiseksi jatkossa, kun resurssit entisestään tiukkenevat. Turvallisuutta ei voi ulkoistaa, mutta sitä voi ja pitää toteuttaa johdetusti, tehokkaasti ja kokonaisvaltaisesti.


Soili Martikainen, TkT, lehtori, Laurea-ammattikorkeakoulu, soili.martikainen(at)laurea.fi
Tiina Ranta, KM, turvallisuuspäällikkö, Laurea-ammattikorkeakoulu, tiina.ranta(at)laurea.fi

Keski-Uudenmaan pelastuslaitos. 2011. Pelastusviranomaisen valvontasuunnitelman mukainen turvallisuustoiminnan riskienarviointimalli – TUTOR Max (suurasiakasversio). Etukäteen asiakkaalle toimitettava informaatioesite. Vantaa: Keski-Uudenmaan pelastuslaitos.

Keski-Uudenmaan pelastuslaitos. 2012. Pelastusviranomaisen valvontasuunnitelman mukainen TUTOR-arviointi. Max versio. Vantaa: Keski-Uudenmaan pelastuslaitos.

Martikainen, S. 2016. Development and Effect Analysis of the Asteri Consultative Auditing Process – Safety and Security Management in Educational Institutions. Acta Universitatis Lappeenrantaensis.  Lappeenranta: Lappeenrannan teknillinen yliopisto.

Martikainen, S. & Ranta, T. 2014. Turvallisuusjohtamisen kautta arjen turvaa. Turvallisuus & Riskienhallinta 6/2014, s. 34 – 35.

Reiman, T. & Oedewald, P. 2008. Turvallisuuskriittiset organisaatiot: onnettomuudet, kulttuuri ja johtaminen. Helsinki: Edita.

STT Info. 2011. OHTO-tuoteturvallisuuspalkinnot suomalaisille innovaatioille. Viitattu 6.9.2016. https://www.sttinfo.fi/release?releaseId=51202

Valtioneuvosto. 2016. Otetaan käyttöön kokeilukulttuuri. Viitattu 9.9.2016.  http://valtioneuvosto.fi/hallitusohjelman-toteutus/digitalisaatio/karkihanke4

Laitinen pääkuva

SERPA: ”Tässä kaiken pitäisi lähteä ihan oikeasti nuorista”

Kokeilukulttuuria nuorten palveluihin

Etnografista asiakastutkimusta on tehty pitkään kulutus- ja päivittäistavarakaupassa (mm. Ruckenstein, Suikkanen & Tamminen 2011, s. 26–27). Vasta viime vuosina on myös julkisissa palveluissa ryhdytty kuulemaan asiakasta. Asiakasraateihin usein hakeutuu sosiaalisesti taitavia ja aktiivisia henkilöitä. Miten osallistaa ihan tavallisia nuoria ja mahdollistaa heitä löytämään oma polkunsa?

Nuorten osallistamiseen käytetään paljon erilaisia keinoja ja siitä huolimatta nuorten osallistaminen toiminnan suunnitteluun ja kehittämiseen ei ole lisääntynyt (Tuusa ym. 2014 s.75). Entä jos ammattilaisten toteuttamaa ”hyvin suunniteltu on puoliksi tehty” -vaihetta vähennettäisiin ja toimintakulttuuria muutettaisiin ”yrittänyttä ei laiteta” suuntaan? Ryhdyttäisiin tekemään asioita, kokeiltaisiin uusia juttuja ja opittaisiin näistä kokemuksista. Näin tuettaisiin nuoria kohti osallisuutta ja nuoren yksilöllistä hyvinvointia (esim. Raivio & Karjalainen 2013, s.12–34).


Talvella 2014 ELSA-toimijatapaamisessa tutkija Antti-Jussi Tahvanainen esitteli amerikkalaisen innovaatiomallin, case DARPA:n (Defence Advanced Research Project Agengy). Keskustelimme havainnoistamme ja päätimme kokeilla DARPA:n toimintamallia sovellettuna nuorisotyöttömyyden kontekstiin.

SERPA – nuorten työllisyyden edistäminen osallistavalla kokeilukulttuurilla -hanke on ESR-rahoitteinen kahden vuoden kokeilu, jonka keskeisenä tavoitteena on osallistaa keskisuomalaisia nuoria ratkaisemaan itse koulutukseen sekä työelämään liittyviä haasteita ryhmän tarjoaman tuen avulla ja tukea näin nuoria opiskelun sekä työelämän suuntaan. Osallistavaan, matalan kynnyksen kokeilukulttuuriin nojautuvien nopeiden kokeilujen kautta pyritään löytämään aidosti toimivia ja uudenlaisia ratkaisuja nuorten kouluttautumis- ja työllistymisedellytysten parantamiseksi. Hankkeen päätoteuttajana on Jyväskylän ammattikorkeakoulu ja hankkeessa on kolme osatoteuttajaa: Jyväskylän Taidetyöpaja ja Äänekosken kaupungin työpaja sekä Nuorten Keski-Suomi ry.

SERPA-hankkeen keskeisinä toimenpiteinä ovat pilottiryhmät, jotka koostuvat 17–29-vuotiaista nuorista ja tarkoituksena on yhdessä tunnistaa sekä rajata ryhmän yhteisiä ongelmia. Nuoret ideoivat ja etsivät osaratkaisuja myös omaan työllistymiseensä liittyviin haasteisiin. Kussakin osatoteuttajan ryhmässä kerätään ideoita ja niitä testataan nopeasti omassa toimintaympäristössä. Pilottiryhmille ei anneta valmiita, rajattuja toimintamalleja tai -suunnitelmia, vaan ideat ovat nuorten omia ja osaratkaisuja voi kehittää hyvinkin vapaasti. Ryhmien toiminnan aikana nuorilla syventyy ymmärrys myös työelämässä välttämättömistä, ns. 2000-luvun työelämätaidoista (kuva 1). Ryhmissä tehtävää kehittämistyötä tuetaan tarvittaessa erilaisin asiantuntija- ja ostopalveluin. SERPA-prosessin dokumentoinnin myötä toimintamalli on levitettävissä ja monistettavissa myös muiden nuorten parissa työskentelevien tahojen käyttöön.

Kuva 1. 2000-luvun työelämätaidot SERPA-toiminnassa (Ville Leppänen).

SERPA-kokemuksia tähän mennessä

Pilottiryhmien muodostamisessa on kriittistä rekrytoida oppimishaluisia nuoria projektipäälliköitä (alle 29-vuotiaita, työelämän ulkopuolella tai ilman opiskelupaikkaa oleva), jotka toteuttavat nuorten kanssa projektin pilottiryhmät. Projektipäälliköiden tehtävänä on koota vapaaehtoisten nuorten ryhmä yhteistyössä TE-toimiston, yhdistysten ja viranhaltijoiden kanssa, toimia ryhmän luotsaajana ja innostajana toimimaan tavoitteen suunnassa. Nuorten projektipäälliköiden kanssa käydään läpi kokeilukulttuurin ajatusmaailmaa sekä palvelumuotoilun systeemistä ajattelua. Heille tarjotaan myös tiimivalmennusta.

Kolmen ryhmän yhteisessä starttipäivässä kukin ryhmä tunnistaa ryhmälleen yhteisiä ongelmia, joiden ratkaiseminen muodostuu ryhmän tavoitteeksi. Ryhmät kokoontuvat oma-aloitteisesti kerran kaksi viikossa ja tapaamisten välillä nuoret etsivät itsenäisesti tietoa käsittelyssä olevasta teemasta. Ryhmätapaamisissa nuoret jakavat etsimänsä tiedon omalla tavallaan muulle ryhmälle ja asiasta keskustellaan eri näkökulmista. Ryhmissä tulee hiljaisia hetkiä ja osa nuorista vaatii ”valmentajan kertovan mitä pitää tehdä”. Nuoria kuitenkin vastuutetaan tekemään omia valintoja. Usein projektipäälliköiden on kaivettava menetelmäsalkkuaan, jotta ryhmässä syntyy keskustelua ja jokainen nuori pääsee osallistumaan. Rohkaistuttuaan nuorilta itseltään tulee yhä suoremmin omia ideoita mitä ryhmätapaamisissa tehdään ja mihin asioihin tartutaan.

Ryhmädynamiikan rakentamisessa käytetään esimerkiksi Room Escape -palveluita ja eläinavusteisia menetelmiä. Tutustumiskohteina ovat olleet 3D-printtaus, kissakahvila ja eri oppilaitokset. Lisäksi nuoret ovat osallistuneet mm. pelinkehittäjä-, matchmaking- ja Dream up -tapahtumiin. Tapahtumia on pidetty alkuun jännittävinä. Hankkeessa käytetyn eKoutsi-mobiilisovelluksen kautta kerätyt palautteet kertovat nuorten kuitenkin pitäneen tapahtumista.

Ryhmätoiminnat päättyvät aina ryhmien yhteiseen Isoon Matkaan, jonka nuoret itse suunnittelevat ja toteuttavat yhdessä projektipäälliköiden kanssa. Lopuksi järjestetään vielä kunkin pilottijakson yhteinen päätöstilaisuus, jossa kaikki ryhmät kertovat omalla tavallaan puolen vuoden ryhmätoiminnastaan ja tuloksistaan (kuva 2). Pilottijaksoja on nyt ollut kaksi, eli kuusi ryhmää on saatu päätökseen.

Päätöstapahtuman visualisointi
Kuva 2. Toisen pilottijakson päätöstapahtuman visualisointi (Kuvitellen Oy).

Nuorten projektipäälliköiden ajatuksia SERPA -ryhmistä ”ei kaduta että tuli lähdettyä mukaan”

Toisen pilottijakson projektipäälliköt haastateltiin heidän ryhmäkokemuksistaan. Projektipäälliköiden mielestä ihmisten kohtaaminen on ollut työskentelyssä keskeistä: ”sai antaa nuorille, mutta myös oppi nuorilta”. He kuvasivat, että ryhmän jälkeen oma itsevarmuus on kasvanut ja ryhmäläisiltä saatu palaute on vahvistanut tätä: ”hienoa kuulla, kun nuori sanoo, että kuuluu johonkin, saa päästää oman persoonan valloilleen”. Projektipäälliköt kuvasivat saaneensa myös ryhmänohjaamis-, yhteistyö- ja esimiestaitoja. Myös tulevaisuuden työelämätaidot olivat konkretisoituneet ja ryhmän kasaan saaminen sekä päiväkirjan kirjoittaminen olivat tuoneet alun vaikeuksien jälkeen onnistumisen kokemuksia.

Haastatteluissa nousi esiin vertaisuuden merkitys ”yksi iso osa suhteesta ja kontaktista ryhmässä”, koska se lisäsi tasa-arvoa ”en kokenut olevani heidän yläpuolella, en ollut liian kaukainen”. Projektipäälliköt olivat tuoneet esiin jonkin verran omia kokemuksiaan ryhmissä ”olen ollut samassa tilanteessa ihan konkreettisesti” ja kokivat sen lähentäneet yhteistyösuhdetta. Oman työttömyys- ja työnhakukokemuksen kautta oli myös helpompi samaistua esimerkiksi Kela-asiointiin ja tunnistaa työttömyyden paineet ”voi tulla helposti muuri, jos on liian kaukana työttömän maailmasta”. Oman kokemuksen kautta oli helpompi myös ymmärtää nuorten erilaiset, negatiivisetkin tunteet, kuten kateuden ja ärsytyksen.

Vertaisuus koettiin tärkeänä asiana, silti projektipäälliköitä mietitytti oma, ajoittain ristiriitainen rooli ryhmänvetäjinä ”nuoret varmasti havaitsivat etten ole työtön vertainen heille, olin kuitenkin töissä”. Ristiriitaisuuteen vaikutti myös sekä työ- ja ryhmänvetämiskokemuksen puute ”oma tunne siitä että mikä roolini on kun en ole perinteinen nuorisotyöntekijä” että aiempi kokemus ”se mihin on tottunut on vetäminen ja jossain vaiheessa oli liikaa suunnittelua vaikka oli kokeiluakin”. He kuvasivat, että ohjaajan asemaan hakeutui, vaikkei se ollut tarkoitus ”puhuin ryhmäläisistä nuorina, vaikka osa oli mua vanhempia”.

Ajoittain oli haastavaa olla rennosti osana nuorten keskustelua ja samalla tiedostaa, että nyt voisi vetää keskustelua takaisin aiheeseen ”pakko välillä pitää vähän järjestyksessä”. Toiminnan vapaaehtoisuus tarkoitti sitä, että kaikki eivät aina tulleet paikalle ja se harmitti välillä ”ei tiennyt kuinka monta tulee tai milloin on seuraava kerta”. Fiiliskyselyssä (eKoutsi) tuli joidenkin keskustelujen jälkeen esiin vaikeita asioita, mikä pohditutti. Toisaalta ryhmäläiset olivat erilaisia persoonallisuuksia eli ”ei voinut olla aina kaikille kivaa, silti tultiin uudestaan seuraavalla viikolla”.

Projektipäälliköt pohtivat paljon kokeilukulttuurin jalkauttamista ja omaa toimintaansa ryhmän vetäjinä ”nyt kun tietää niin olisi voinut vielä enemmän tuoda kokeilukulttuuria”. He pohtivat mitä olisi itse voinut tehdä toisin ”jos olisikin vain antanut mennä, olisi antanut tehdä ja epäonnistua ja olisi siitä oppinut”. Nuorilähtöisyys ja kokeilukulttuuri on helppo ymmärtää paperilla, mutta konkreettisesti ja aidosti nuorten näköinen toiminta on haastavaa. Projektipäälliköt pohtivatkin ”kuinka olla kaikissa rooleissa yhtä aikaa mutta ei ottaa liikaa kantaa mihinkään?”. Entä kuinka mahdollistaa asioita, kun nuoret eivät olleetkaan niin aktiivisia? ”Jos nuorilta ei tullut ideaa, niin sitten istutaan ja ollaan hiljaa”. Toiminta ei saanut kuitenkaan olla liian rentoa, koska ”kyseessä ei ollut leikki- tai iltapäiväkerho”.


SERPA-hankkeen vahvuuksia, mahdollisuuksia, uhkia ja heikkouksia on esitelty SWOT-analyysissä (kuvio 1).

Laitinen SWOT
Kuvio 1. SWOT-analyysi SERPA-hankkeen toiminnasta.

Kuten nuorten projektipäälliköiden haastatteluista nousee esiin, aito nuorilähtöinen toiminta on haastavaa, mutta samanaikaisesti antoisaa. Se tarjoaa mahdollisuuden ainutlaatuiseen vertaistukeen, oivalluksiin, osallisuuden kokemuksiin ja oppimiseen. Projektipäälliköiden mukaan kokeilukulttuurissa voisi olla vahvuus, kun ei ole ennakkokokemuksia, odotuksia tai asenteita toimintaa kohtaan. Tällöin ei ole sidoksissa jo opittuihin tapoihin tehdä työtä ja voi ottaa avoimin mielin kokeilun mahdollisuudet vastaan.

Projektipäälliköt pohtivatkin haastatteluissa sitä, miten ympäristö ottaa uuden työtavan vastaan. Kun aiemmin on korostettu ammattilaisen asiantuntijuutta toiminnan järjestämisessä, niin SERPA-ryhmissä ajatus onkin käännetty päälaelleen ja nuorten asiantuntijuus on keskeinen toiminnan liikkeelle paneva voima. Ryhmän vetäjä on mukana prosessissa vertaisena, mahdollistajana ja kanssakulkijana, ei neuvojana, ohjaajana tai asiantuntijana. Vallitsevan toimintakulttuurin muutos vie aikaa, mutta rohkaisevilla kokeiluilla voidaan avata ajatuksia uusille tavoille toimia.

Ryhmien vetäjät tarvitsevat perehdytystä ja tukea, mutta samanaikaisesti vapaat kädet toimia aidosti kokeilukulttuurin periaatteilla. Tämä tuo haasteita ryhmän vetäjän koulutukseen. Kysymyksiä herättää myös nuorten rekrytointi ja motivointi mukaan ryhmiin. Keiden kaikkien pitäisi ottaa vastuuta nuorten ohjaamisesta juuri heille sopiviin palveluihin? Kuinka kääntää ”pakolla” tulleen nuoren vastustuksen aidoksi motivaatioksi osallistua?

SERPA-hankkeen kolmas pilottiryhmävaihe on nyt käynnistynyt ja samanaikaisesti pohditaan toimintamallin juurruttamista hankkeen osatoteuttajien pysyvään toimintaan. Paljon on vielä kysymyksiä ilman vastauksia, mutta ehkä nuoret itse osaavat vastata niihin?

Kokeileva Suomi http://kokeilevasuomi.fi/kokeilut
Palvelumuotoilu http://palvelumuotoilu.fi
Palvelumuotoilun työkalupakki www.sdt.fi
Radikaalimpi innovaatiotoimintamalli www.darpa.mil
Työllisyyskokeilujen selvitys, TEM 30/2016 http://julkaisut.valtioneuvosto.fi/bitstream/handle/10024/75328/TEMjul_30_2016_16082016.pdf?sequence=1
Uusi osaamisohjelma Euroopalle http://ec.europa.eu/transparency/regdoc/rep/1/2016/FI/1-2016-381-FI-F1-1.PDF


Janne Laitinen, FM, projektiasiantuntija, Jyväskylän ammattikorkeakoulu, janne.laitinen(at)jamk.fi
Katja Raitio, TtM, lehtori, Jyväskylän ammattikorkeakoulu, katja.raitio(at)jamk.fi

Raivio, H. & Karjalainen, J. 2013. Osallisuus ei ole keino tai väline, palvelut ovat! Osallisuuden rakentuminen 2010-luvun tavoite- ja toimintaohjelmissa. Teoksessa Taina Era (toim.): Osallisuus – oikeutta vai pakkoa? Jyväskylän ammattikorkeakoulun julkaisuja 156.

Ruckenstein, M., Suikkanen, J. & Tamminen, S. 2011. Unohda innovointi. Edita, Helsinki http://www.sitra.fi/julkaisut/sitra291.pdf. Viitattu 30.8.2016.

Tuusa, M., Pitkänen, S., Sheimeikka, R., Korkeamäki, J., Harju, H., Saares, A., Pulliainen, M., Kettunen, A. & Piirainen, K. 2014. Yhdessä tekeminen tuottaa tuloksia. Työ ja yrittäjyys. Työ- ja elinkeinoministeriön julkaisuja 15/2014.

Jaettu simulaatio – monen toimijan yhteispeliä

Jaettu simulaatio -pilotin tavoitteena oli kokeilla ja kerätä kokemuksia etäyhteydellä toteutetusta simulaatiosta. Pilotti toteutettiin Saimaan ammattikorkeakoulun ja Metropolia ammattikorkeakoulun välisenä yhteistyökokeiluna ja suunnittelijoina sekä toteuttajina toimi kaksi hoitotyön opettajaa molemmista ammattikorkeakouluista. Pilotti-simulaatio toteutettiin syksyllä 2015.

Hoitotyön opettajat aloittivat jaetun simulaation suunnittelun tammikuussa 2015 ammattikorkeakoulujen opetussuunnitelmien ja simulaatiopäivän ajankohdan yhteensovittamisella. Ammattikorkeakoulun opetussuunnitelmat poikkesivat toisistaan ja kahden sairaanhoitajaopiskelijaryhmän yhteisen simulaation sovittaminen opetussuunnitelmaan oli monimutkaista. Lopulta päädyttiin lähellä valmistumista olevien opiskelijoiden simulaatioon, joka sopi sekä aikataulullisesti että aiheensa puolesta kaikkien opetussuunnitelmaan. Seuraavassa vaiheessa suunniteltiin simulaation oppimistapahtumat. Oppimistapahtuman suunnittelusta ja vetämisestä vastasi Saimaan ammattikorkeakoulun opettajapari.

Kevään 2015 aikana mukaan suunnitteluun otettiin myös molempien organisaatioiden IT-palvelut, joiden kanssa aloitettiin sopivien järjestelmien miettiminen. Vuoropuhelu kahden eri organisaation IT-palveluiden kanssa vaatikin useita palvelutikettejä sekä erinäisiä sähköposteja laitteista ja tiloista. Lopulta verkkoyhteyden avulla jaettu simulaatio päätettiin toteuttaa olemassa olevilla järjestelmillä, VLC mediaplayerin avulla ja laitosten välisellä Lync-yhteydellä. Simulaation toteutus on kuvattu kuviossa 1.

Simulaation tekninen toteutus
Kuvio 1. Simulaation tekninen toteutus.

Syksyllä 2015 yhteistyökokeilu eteni etäyhteyskokeiluun. IT-palveluiden aktiivinen rooli oli tässä vaiheessa erittäin tärkeä ja ilman heitä ei kuvaa tai ääntä olisikaan välittynyt. Muutamien kokeilujen pohjalta saatiin molempien organisaatioiden palomuureihin kuitenkin simulaation mentävät reiät ja vihdoin pääsimme myös näkemään toisemme livenä simulaatiotiloissa.

Syksyn 2015 kohokohta koitti marraskuussa jaetun simulaation pilottipäivänä. Molempien organisaatioiden IT-tuet oli varattu olemaan paikalla ja aamulla tehtiin vielä testit, että kaikki toimii. Pilotti sujui huolellisten esivalmistelujen ansiosta mainiosti. Verkkoyhteydet, kuva ja ääni välittyivät hyvin molempien ammattikorkeakoulujen välillä. Myös opiskelijoilta saatu palaute oli positiivista ja rohkaisi jatkamaan verkkoyhteyden avulla toteutettuja simulaatioita.

Mitä opimme yhteistyökokeilusta?

Ammattikorkeakoulumaailman mittapuun mukaan tämä yhteistyökokeilu rakennettiin nopeasti ja pienin kuluin. Kokeilu kuitenkin vaati paljon suunnitteluaikaa ja monien eri yhteistyötahojen mukanaoloa. Yhden päivän simulaatiopilottia varten käytiin lukuisia keskusteluja ja tehtiin useita sähköposti- ja kalenterimerkintöjä sekä IT-palvelupyyntöjä. Mitä suuremmista organisaatioista on kyse, sitä kankeammin aikataulut ovat sovitettavissa yhteen ja sitä suurempi todennäköisyys viime hetken muutoksille on.  IT-palveluilla oli tässä kokeilussa suuri rooli opettajien idean mahdollistajina ja tukena, ilman heidän yhteistyötään ei pilotti olisi onnistunut. Verkossa tapahtuvan oppimisen ja digitalisaation myötä IT-tuen merkitys vain kasvaa. Siksi olisikin hyvä saada IT-palveluiden henkilöitä enemmän mukaan seuraamaan opetusta, jolloin he myös näkisivät ja ymmärtäisivät paremmin mitä tarpeita opettajilla ja opiskelijoilla on.

Hoitotyön opetukseen jaettu simulaatio antoi paljon uusia ideoita. Tähän asti simulaatioon osallistujien on pitänyt olla fyysisesti paikalla, mikä on rajoittanut esimerkiksi työelämäedustajien mukanaoloa. Verkkoyhteyden avulla toteutetussa simulaatiossa voidaan jatkossa hyödyntää entistä paremmin työelämänedustajia sekä muita asiantuntijoita ilman, että heidän pitää poistua omalta työpisteeltään. Ammattikorkeakoulujen yhteistyöstä yhteistyökokeilu opetti paljon. Yhteisten oppimistapahtumien suunnittelu ja yhteensovittaminen vaativat innostusta ja joustoa kaikilta osapuolilta.


Emilia Laapio, terveysalan lehtori, TtM, SH (AMK), Saimaan Ammattikorkeakoulu, emilia.laapio(at)saimia.fi
Päivi Rimpioja, sairaanhoitajakoulutuksen tutkintovastaava, KM, SHO, SH, Metropolia Ammattikorkeakoulu, paivi.rimpioja(at)metropolia.fi

Luukkonen pääkuva

Kokeilut osana kokeellista tutkimusta Kajaanin ammattikorkeakoulussa

Kokeellisuus on keskeinen osa soveltavaa tutkimusta, jota ammattikorkeakouluilla tehdään. Miten kokeileminen soveltuu tutkimukseen ja mitä sillä oikeastaan tarkoitetaan? Kokeilukulttuuri on yksi hallitusohjelman kärkihankkeista: siinä pyritään madaltamaan kynnystä ja lisäämään kokeiluja muun muassa valtion, kuntien, maakuntien ja kansalaisten tasolla. Tavoitteena on parantaa palveluja, lisätä omatoimisuutta ja edistää yrittäjyyttä.  Esimerkki valtion tason strategisista kokeiluista on perustulokokeilu.

Kokeilukulttuuria geopolymeerien parissa

Kokeilukulttuuria edustaa Kajaanin ammattikorkeakoulussa jo useita vuosia jatkunut geopolymeeriteknologian tutkimus. Geopolymeerit ovat monipuolisia materiaaleja, joita voidaan valmistaa useista teollisista sivutuotteista yksinkertaisia valmistustekniikoita hyödyntäen. Tutkimus on monialaista ja se yhdistää muun muassa kemian, materiaali-, rakennus- ja ympäristötekniikan osaamista. Geopolymeereistä on kaavailtu esimerkiksi matalan hiilijalanjäljen vaihtoehtoa perinteiselle portlandsementille, joka valmistetaan kalkkikivestä korkeassa lämpötilassa. Kajaanin ammattikorkeakoulussa on kehitetty toimivia geopolymeereihin perustuvia ratkaisuja vedenkäsittelyyn, rakennustuotteisiin ja tienrakennukseen liittyen.

Kokeilukulttuuri toteutuu tässä työssä varsin nopeana tutkimuskysymyksien viemisenä kokeellisiksi: esitestejä tehdään runsaasti. Alan kirjallisuudesta etsitään keskeiset tiedot, joiden pohjalta voidaan esitestien avulla iteroida kohti onnistunutta ratkaisua. Tällöin tutkimuskysymysten ja hypoteesien täytyy olla selkeitä. On hyvä pitää mielessä, että lähestymistapaan liittyy kuitenkin riski: esitestit eivät välttämättä johda haluttuun lopputulokseen ja koemäärä kasvaa. Tehdään paljon kokeita, mutta ne saattavat johtaa negatiivisiin tuloksiin.

Lähes päinvastainen tapa on soveltaa tilastollista koesuunnittelua, jossa minimimäärällä kokeita saadaan selville erilaisten muuttujien tasot optimituloksen saavuttamiseksi. Tilastollista koesuunnittelua varten vaaditaan kuitenkin perusymmärrys systeemissä vaikuttavista muuttujista – eli kokeiluja. Kajaanin ammattikorkeakoulussa on toimittu juuri näin: kokeilujen avulla on haettu esimerkiksi geopolymeerien rakenteeseen vaikuttavien muuttujien järkeviä lukuarvoja, joita on sitten optimoitu tilastollisten menetelmien kautta.

Opiskelijat ovat olleet geopolymeeritutkimuksessa mukana erilaisten projekti- ja opinnäytetöiden kautta. Esimerkkejä toteutetuista projekteista ovat rakennustekniikan insinöörityöt. Näistä muiden muassa yksi työ liittyi geopolymeeribetonin soveltamiseen perinteisen betonin korvaajana (sementtivapaa betoni) sekä toinen, jossa selvitettiin portlandsementin osittaista korvaamista ruiskubetonimassassa. Lisäksi on tehty vielä kokeilevampia opiskelijatöitä geopolymeerimassan käyttämisestä alumiinivalumuotin materiaalina ja yksi teollisuusrobotti on saanut jalustan geopolymeeribetonista. Geopolymeerejä on tarkasteltu myös kaupallistamisnäkökulmasta. Opiskelijavoimin on kehitetty geopolymeereihin liittyviä liiketoimintamalleja, tutkittu rahoitusmahdollisuuksia sekä toimitusketjun hallintaan liittyviä asioita.

Kuva 1. Geopolymeerisuodattimien kokeilua Kajaanissa sijaitsevalla Peuraniemen jätevedenpuhdistamolla.

Ammattikorkeakoulujen ja yliopistojen erot kokeilukulttuurissa?

Onko ammattikorkeakoulujen ja yliopistojen välillä selkeitä eroja kokeilukulttuurin näkökulmasta? Yliopistojen tutkimus, vaikka onkin menossa jatkuvasti soveltavampaan suuntaan, on perustutkimusluonteisempaa. Reaktiot ja materiaalit pyritään ymmärtämään syvemmin. Ammattikorkeakoulujen tutkimus on käytännöllisempää. Yksi keskeinen ero tutkimuksen tekemisessä on julkaiseminen: yliopistot tähtäävät tiedejulkaisuihin, mitä vaatimusta ei ammattikorkeakouluilla ole. Ammattikorkeakoulujen yksi tulosindikaattori ovat myös syntyvät julkaisut, mutta niitä ei ole rajattu pelkästään vertaisarvioituihin sarjajulkaisuihin. Tämä vapauttaa tutkimukselta resursseja viedä tutkimusta nopeammalla aikataululla eteenpäin, mutta poistaa erään tieteelliseen metodiin liittyvän laadunvarmistuksen. Ei tiedejulkaiseminen kuitenkaan poissuljettua ole ammattikorkeakouluissakaan ja esimerkiksi Kajaanin ammattikorkeakoulun geopolymeeritutkimuksia (yhteistyössä esimerkiksi Oulun yliopiston kanssa) on julkaistu useissa tiedelehdissä. Yritysten ja varsinkin pk-sektorin tutkimus on vielä pidemmälle vietyä ”olennaiseen” keskittymistä rajallisista resursseista ja tulostavoitteista johtuen.

Toimintamalli ammattikorkeakoulujen, yliopistojen ja yritysten keskiössä

Kajaanin ammattikorkeakoulussa on havaittu, että esimerkiksi geopolymeeritutkimus on parhaimmillaan juuri yhteistyössä yliopistojen ja yritysten kanssa. Eräs esimerkki on typenpoistoon kehitetty adsorbenttimateriaali. Kehitystyö alkoi vuonna 2013 EAKR-rahoitteisessa GeoMaterials-hankkeessa, jossa materiaalin valmistusta, ominaisuuksia ja käytettävyyttä tutkittiin laboratorio- ja kenttäkokeiden avulla. Yritykset tarjosivat hankkeessa raaka-aineita ja testiympäristöjä, yliopisto erityisesti analytiikan osaamista ja Kajaanin ammattikorkeakoulun rooli oli kehittää valmistustekniikkaa. Lupaavien tulosten pohjalta laadittiin uusi Tekes-rahoitteinen tutkimushanke GeoSorbents. Tässä vuoden 2016 loppuun jatkuvassa hankkeessa materiaalin kaupallistamista on vetänyt Aquaminerals Finland Oy. Sen yhtenä tärkeänä havaintona voidaan pitää sitä, että projektitutkijoiden työajan tilanteenmukainen ja joustava jakautuminen yrityksen, ammattikorkeakoulun ja/tai yliopiston välille on tehokas toimintatapa. Tällöin tutkimustulokset tulevat aidosti hyödynnettyä.


Tero Luukkonen, FT, projektitutkija, Kajaanin Ammattikorkeakoulu Oy, tero.luukkonen(at)kamk.fi
Kimmo Kemppainen, Ins. (AMK,yl), projektipäällikkö, Kajaanin Ammattikorkeakoulu Oy, kimmo.kemppainen(at)kamk.fi
Antti Rimpiläinen, FM, projektityöntekijä, Kajaanin Ammattikorkeakoulu Oy, antti.rimpiläinen(at)kamk.fi

Vastaan- ja vastuunottokyky – havaintoja opetuskokeilusta

Motivoitunut opiskelija pärjää kurssilla toteutusmenetelmästä huolimatta. Löytyisikö menetelmä, joka veisi parhaan kärkijoukon tuloksia eteenpäin, mutta auttaisi myös läpipääsyn kanssa kamppailevia? Tätä testattiin Saimaan ammattikorkeakoulun Liike-elämän matematiikka -kurssilla keväällä 2016. Aiemmin hyvää opiskelijapalautetta saanutta kurssia oli muokattava, koska säästöpaineissa valmisteluresursseja tiukennettiin. Tulokset yllättivät.

Uusi toteutustapa

Oheiseen kuvioon (Kuvio 1.) on kirjattu aiempi toteutustapa sekä sen rinnalle aiheen käsittelytapa kokeilussa. Uuden mallin tavoitteena oli tasoittaa opiskelijoiden työkuormaa, parantaa oppimistuloksia ja vähentää opettajasta hieman turhalta tuntuvaa työtä. Perinteisessä toteutuksessa opettaja sai pelkkiä tenttitehtäviä tarkastettavakseen noin tuhat, kun kurssilaisia oli yli 80. Opetuskokeilussa otettiin käyttöön vertaispisteytettävä näyttötenttimenetelmä. Sen tavoitteena oli, että tenttikin olisi oppimistilanne. Kokeilussa oikea ratkaisutapa käytiin läpi heti tentin jälkeen, jolloin oma suoritus oli vielä muistissa. Toisen opiskelijan paperin pisteyttäminen taas tarjosi mahdollisuuden nähdä, miten joku muu asiaa ajatteli. Oppimisen varmistus toteutettiin oman osaamisen arviointiraportissa. Koska näyttötenttien tekeminen ja pisteyttäminen veivät aikaa, osa kurssin aiheista siirrettiin itseopiskeluun. Itseopiskeluun valittiin aiheita, jotka todennäköisesti eivät tule työelämässä vastaan kaikille opiskelijoille.

Kuvio 1
Kuvio 1. Kurssin toteutus aiemmin sekä yhden aiheen käsittely uuden suunnitelman mukaan.


Opiskelijoiden asennoituminen kurssin edetessä

Kurssin toteutustapa käytiin läpi opiskelijoiden kanssa ensimmäisellä tapaamiskerralla. Tämän jälkeen opiskelijoilta pyydettiin sekä sanallisia kommentteja että janalle piirrettävää arviota menetelmän sopivuudesta opiskelijalle itselleen, kun vertailtavana on tavallinen välitenttimenettely. 72 opiskelijaa 88:sta vastasi kyselyyn. Vastanneiden arviot menetelmästä olivat odotuksia positiivisemmat.

Kuvio 2. Opiskelijoiden arviot menetelmän sopivuudesta kurssin alussa.


Kyselyllä selvitettiin myös, ketkä aikoisivat opiskella itsenäiseen opiskeluun siirretyt tai siirrettyjä aiheita. Tässäkin tulos yllätti. Oletuksena oli ollut, että vain edellytyksiltään parhaimmat haluaisivat suorittaa tämän lisäpisteitä tuovan ylimääräisen osan. Mutta alustavasti ilmoittautuneita olikin enemmistö kurssilaisista. Kiinnostuneiden joukossa oli monia niitäkin, jotka opettaja oli aiempien opintojen perusteella arvioinut nimenomaan opiskelukuorman keventämistä tarvitseviin. Onkin hyvä pohtia, miten realistisesti opiskelijat osaavat arvioida omia valmiuksiaan ja ajankäyttöään?

Joidenkin opiskelijoiden kyvyssä hahmottaa kokonaisuuksia lienee pulmia: jo parin poissaolokerran tai huonon tuloksen jälkeen osa koki, etteivät he pääse kurssista läpi. Asennetta esiintyi, vaikka kurssin edetessä aina kerrottiin, kuinka suuri osuus pisteistä on kyseisellä hetkellä yhä jakamatta ja kuinka isoja, perusteista asti alkavia aihekokonaisuuksia on yhä käymättä läpi.

Kirjallista palautetta ei kokeilun puolivälissä kerätty, mutta mielialojen laskua suoritusmenetelmään liittyen oli havaittavissa. Moni kommentoi, että olisi helpompaa tenttiä koko kurssi kerralla kuin pienissä osissa. Opettajasta nämä kommentit kuulostivat epärealistisilta, ja sellaisiksi ne myöhemmin enemmän tai vähemmän osoittautuivatkin.

Kurssin edetessä, kun opiskelu- ja vastaustekniikka alkoi olla hallussa, näyttötenttien tulokset pisteiden keskiarvolla mitattuna alkoivat kohota. Aiheet, jotka olivat aiempien kurssien välitenteissä tuottaneet ongelmia, saivat nyt hyviä pisteitä. Näyttötentteihin osallistuneet hallitsivat hankalia aiheita aiempia kursseja selvästi paremmin. Osasyynä keskiarvopisteiden paranemiseen oli toki se, että kurssiin heikommin panostaneet opiskelijat olivat jo luovuttaneet.

Kurssin loppua kohti opiskelijoiden asenteet kääntyivät jälleen positiivisiksi. He huomasivat, kuinka paljon haastavampaa olisi, jos kaikki aiheet olisivat tentittävinä toukokuun koittaessa. Opettajan motivointipuheen myötä osa hyväksymisrajaa hipova ymmärsi, että on ajallisesti helpompaa opiskella viimeiset aiheet kunnolla ja varmistaa kurssin läpipääsy kuin tenttiä kaikki aiheet uusintatentissä.

Toiseksi viimeisellä tapaamiskerralla opiskelijoille annettiin täytettäväksi vastaava menetelmän arviointilomake kuin ensimmäisellä kerralla. Opiskelija-arvioiden muuttumista ei voi tulkita aukottomasti, sillä moni jätti tulematta tenttiin. Vastaajia oli enää 55. Selvää on, että menetelmä jakoi opiskelijoiden mielipiteet. Sanalliset palautteet menetelmästä vaihtelivat täysin epäonnistuneesta erinomaiseen: ”Näyttötentti oli epäonnistunut tapa toteuttaa kurssi”, mutta toisaalta: ”En ole missään aineessa, missään koulussa oppinut asioita näin hyvin kuin tällä kurssilla. On ollut pakko opiskella” tai ”Mielestäni opetustavat ja opetus oli todella toimivaa eli jos on vain kiinnostusta opiskelijalla oppia niin ei pitäisi jäädä ainakaan opetuksesta kiinni.”

Menetelmän tuloksia

Opetusmenetelmäkokeilun tulokset yllättivät. Sen sijaan, että heikoimpia opiskelijoita tukemaan tarkoitettu menetelmä olisi auttanut opiskelijat läpi kohtuullisella kuormalla, tuloksena oli aiempiin toteutuksiin verrattuna moninkertainen määrä hylättyjä suorituksia. Hylättyjen arvosanojen syynä eivät olleet huonot pisteet kaikista näyttötenteistä, vaan että isoon osaan näyttötenttejä ei osallistuttu lainkaan.

Toisaalta menetelmä tuotti myös paljon erinomaisia arvosanoja. Taidoiltaan ja ennen kaikkea opiskeluvalmiuksiltaan edistyneemmät opiskelijat osasivat hyödyntää mahdollisuudet: ”Tenttitapa mahdollisti helposti hyvän arvosanan saamisen ja teki oppimisesta helppoa!” tai ”Näyttötenttitapa sopi hyvin minulle, koska asiat oli pakko oppia ja ne olivat muistissa vielä myöhemminkin. Perustukset tulivat vahvoiksi ja oli mukava oppia lisää.”

Opiskelijat, joilla oli opiskeluteknisiä tai mahdollisesti vastuunottokykyyn liittyviä puutteita, vaikuttivat syyttävän heikosta menestyksestään uutta menetelmää: ”Poissaolojen vaikutus tenttipisteisiin rikkoo opiskelijan oikeusturvaa” tai ”Näyttötenttimenetelmän sekavuus vaikeutti oppimista.” Vastuunottokyvyn puutteisiin liittyviä seikkoja tukee tosiasia, että heti kurssin päätyttyä oli mahdollisuus uusintatenttiin, joka toteutettiin perinteisenä tenttinä. Jos näyttötentit olisivat olleet syy, ne olisi voinut jättää tekemättä. Opetukseen olisi voinut osallistua normaalisti ja osaamisen olisi voinut osoittaa uusintatentissä. Näin ei tehty.

Opiskelijat vaikuttavat olevan yllättävän perinteisiä. Syystä tai toisesta luento nähtiin opiskeluna, mutta näyttötenttien yhteistarkistamista ei. Asenne ei muuttunut, vaikka toteutustapa kerrattiin jokaisen näyttötentin alussa. Valitettavan harva opiskelija hyödynsi koko suunnitellun opiskeluprosessin. Vain muutamat tekivät lisäpisteitä tarjonneen oman osaamisen arviointiraportin. Lisäksi kovinkaan moni ei testannut osaamistaan kotitehtävin.

Opettajan näkökulmasta menetelmän suurimmiksi heikkouksiksi nousivat erot opiskelijoiden välillä sekä kyvyssä ottaa vastuuta oppimisestaan että annettujen ohjeiden noudattamisessa. Ensimmäinen vaikutti kurssin suorittamatta jättämiseen, mutta toinen myös muihin opiskelijoihin. Oletuksena kokeilussa oli, että opiskelijoiden vaihe vaiheelta tekemät näyttötenttien yhteispisteytykset tuottaisivat tasaista jälkeä. Kaikki pisteyttämiseen liittyvät seikat kun olivat sekä nähtävissä että kuultavissa. Opettajan tekemät pistokokeenomaiset tarkistukset paljastivat kuitenkin ongelmia. Osa opiskelijoista ei ollut huomioinut pisteytysohjeita, ja opettajan lisätarkistus tuotti lisää pisteitä. Jälkikäteen ajateltuna pisteytysongelma olisi pitänyt ymmärtää jo aiemmin. Aina eivät helpoimmatkaan ohjeet tavoita kaikkia. Miten moniosaiset pisteytysperustelut voisivat silloin olla kaikilla opiskelijoilla riittävän hyvin hallinnassa?

Jos verrataan näyttötenttejä ja perinteistä tenttiä, oliko tuloksissa eroja? Esimerkiksi käyvät aiemmilla toteutuksilla vaikeiksi osoittautuneet aiheet. Investointilaskentatehtävän pisteiden keskiarvo oli näyttötenteissä 4,5 ja uusintatentissä 0,9 pistettä kuudesta. Vuositason reaalisen suhteellisen muutoksen laskeminen oli näyttötenteissä osattu hyvin: pisteiden keskiarvo oli 5,0. Uusintatentissä vastaava pisteiden keskiarvo oli 0,6. Toki uusintatenttiin osallistui ehkä keskimääräistä heikommin suoriutuvia opiskelijoita, mutta mukana oli myös niitä, jotka olivat ennalta ilmoittaneet jättävänsä näyttötentit väliin. Heidän mielestään perinteinen tenttitapa sopi heille paremmin.


Kokonaisuudessaan menetelmä aiheutti opettajalle enemmän työtä kuin mitä alun perin oli ajateltu. Lisäksi ammattikorkeakoulun kurssista keräämä palaute oli kriittisempää. Kun aiempien kurssien yleispalautteen keskiarvo oli ollut 4,5–4,7, näyttötenttimenetelmällä suoritetun kurssin vastaava arvosana oli 3,5.

Menetelmäkokeilu ei jatku, vaikka siitä pitäneet ja siitä luultavasti myös hyötyneet olivat kurssin aikana kerätyissä vastauksissa enemmistönä. Jos matematiikan kursseja olisi useita, opiskelijoita voisi totuttaa menetelmään vähitellen ja saada nyt havaitut ongelmat poistumaan. Yhden kurssin urakaksi heikkouksia on ehkä liikaa.

Kaikilla kursseilla opiskelijat tuntuvat jakautuvan aiempaa selvemmin hyvin pärjääviin ja hylättyjä suorituksia kerääviin. Mikä olisi menetelmä, joka auttaisi kaikkia? Miten tällaisen opiskelumenetelmän kehittäminen on mahdollista, jos opetukseen ja erityisesti sen valmisteluun annettu aika niukkenee edelleen? Menetelmästä riippumatta oleellisin kysymys kuitenkin lienee, miten saisi opiskelijat ymmärtämään sen korvaamattoman suuren merkityksen, joka heidän omalla toiminnallaan ja toimintatavoillaan on opiskelussa ja oppimisessa.

Menetelmäkokeilu tuotti paljon ajateltavaa. Positiivisiksi esimerkeiksi jäävät ne muutamat opiskelijat, jotka olivat varmistaneet suorituksillaan parhaan arvosanan kurssista jo ennen viimeistä näyttötenttiä – mutta tulivat silti tekemään sen viimeisenkin! Olkoot he esimerkkejä asenteesta, jonka voimin opettajakin jaksaa.

Info: Tietoja menetelmästä

  • 4 opintopisteen kurssilla oli yhteensä 13 näyttötenttiä. Huonoin tulos jätettiin kaikilta huomiotta. Tämän tarkoituksena oli paikata esim. sairastumisesta aiheutuvaa poissaoloa.
  • Kussakin näyttötentissä oli rajattu aihe, josta oli 6 pisteen kysymys tai kaksi pienempää 3 pisteen kysymystä.
  • 5 minuuttia järjestelyihin ja opastukseen
  • 15 minuuttia laskuaikaa
  • 5 minuuttia aikaa puhtaaksi kirjoittamiseen
  • noin 20 minuuttia tarkistukseen ja pisteyttämiseen
  • Näyttötenttipaperit olivat nimettömiä. Kullakin opiskelijalla oli 2-numeroinen ID-numero. Sekä tenttijä että pisteyttäjä kirjasivat numeronsa tenttipaperiin.

Artikkelin kuva: Hämeen ammattikorkeakoulun kuvapankki


Anu Nuutinen, lehtori, YTM, HHJ, Saimaan ammattikorkeakoulu, anu.nuutinen(at)saimia.fi