Sustainability as a driver of impact creation

Authors: Amit Kumar Mishra, Jaana Seikkula-Leino & Eeva-Liisa Viskari.

Universities of Applied Sciences need to make an impact in society

Universities of applied sciences (UAS) have existed in Finland since 1990’s. The statutory task of UAS’ is to provide professional higher education and promote the industry, business and regional development and regenerate the industrial structure of the region (Universities of Applied Sciences Act 932/2014). In recent years UASs have been actively seeking alternative ways of making an impact in the society both in terms of education and applied research and development activities.

Understanding impact creation – presenting IC1.0

There is a growing opinion that higher education institutes have to create impact. Tampere University of Applied Sciences has adopted a new approach and started to increase its impact in three strategic fields: sustainability, new technologies and future competencies and learning. These fields interact through the activities, and the team working together, thus creating impact in the society.  Based on this, the authors suggest a Venn diagram (Figure 1) of these strategic fields, which may create impact, and call it the map of impact generation – IC1.0.

Real lasting impact is created by a consolidated effort in at least three domains, namely sustainability, new and emerging technologies, and future competencies and learning. Each of these three domains affects each other in a symbiotic manner.

  • New technologies for sustainability and sustainability for new technologies (T4S4T)

Most of the goals listed in UN’s Sustainable Development Goals (SDGs) need major contributions from emerging technologies. At the same time, SDGs give motivations and challenges for technological innovations.

  • Future competencies and learning and economy for sustainability and sustainability for future competencies and learning (L4S4L)

Be it learning or competency creation, the effect of sustainability is conspicuous. Universities and UASs can expand their business and education material and pedagogy by delivering materials, learning environments and other pedagogical initiatives in the domain of sustainability. Similarly, competencies and learning for technology, and technology for learning and economy (L4T4L) interact (Figure 1).

Figure 1. The map of impact generation IC1.0 as suggested by the authors.
Figure 1. The map of impact generation IC1.0 as suggested by the authors.

How is Tampere University of Applied Sciences creating an impact?

Tampere University of Applied Sciences is implementing a new approach in increasing its societal and educational impact. At the beginning of 2020, three new Impact Leaders have started their targeted work to increase the role of the university in research and development, build networks and strengthen the visibility and recognizability of the university as an R&D player, both nationally and internationally. The three strategic impact areas are:

  1. Adaptation of emerging technologies and 4IR
  2. Learning capabilities in modern work environments and international networks
  3. Ecological innovations and socio-cultural challenges.

Since the target of impact, creation involves a multidisciplinary approach of different domains, continuing knowledge creation, and specific procedures. To begin with, we are aiming to find a more particular understanding of the impact and its nature. What is impact, especially in UAS context? What will be our processes and ways to promote impact? With whom do we create an impact? What are the indicators? How to evaluate and assess the outcomes? These are the questions to be focused on. It cannot, however, be a task of one single UAS only. Therefore, fundamental discussion, both in national and regional level needs to be initiated; what has been the impact of universities of applied sciences in Finland nationally and regionally, and these days even more – internationally?


Amit Kumar Mishra, PhD, Impact Leader – Emerging Technologies and 4IR, Tampere University of Applied Sciences, RDI and Business Operations, amit.india(at)

Jaana Seikkula-Leino, PhD, Impact Leader – Future Competencies and Learning, Tampere University of Applied Sciences, RDI and Business Operations, jaana.seikkula-leino(at)

Eeva-Liisa Viskari, PhD, Impact Leader – Sustainability, Tampere University of Applied Sciences, RDI and Business Operations, eeva-liisa.viskari(at)

New research group wants to promote sustainability of future circular bioeconomy society

Authors: Silja Kostia, Ulla Häggblom, Erkki Kiviniemi, Mikael Lindell, Riitta Vihuri & Eeva-Liisa Viskari.

New research group promoting sustainable solutions and business

Four research groups started at Tampere University of Applied Sciences (TAMK) in the beginning of February 2020. TAMK is an acknowledged actor in the research, development and innovation (RDI) activities and an attractive multidisciplinary educator with over 10 000 students and over 40 degree programmes. The Master’s degree programme in Risk Management and Circular Economy (RIMCE) is a forerunner. This is an excellent basis for the developmental actions.

Target of the “Next level circular bioeconomy actions” research group is to strengthen TAMK’s impact as a promoter in future sustainable solutions and business. It originates from the existing expertise and research projects, and meets the challenge of a multidisciplinary team sharing a common goal. In this article we describe TAMK’s research topics and achievements in circular bioeconomy, and aims and actions of the new research group. TAMK’s role in the regional innovation ecosystem is also discussed.

From table to table – research closing nutrient and material loops

No food is grown without fertilization and energy input in agriculture. Due to diminishing phosphorus reserves, nutrient recovery and reuse is essential in the future. Promising results have been achieved in terms of using, for example, source-separated urine as such, or nutrients recovered from urine, as a fertilizer. Tampere University of Applied Sciences has coordinated in 2015–2019 several research projects related to nutrient recovery and reuse (Viskari et al., 2018, Malila et al., 2019b), and therefore has a lot of experience in promoting circularity and sustainable livelihoods. The research and development also aim at raising discussion about the acceptability, safety and administrative challenges of these fertilizer products. Furthermore, different technological solutions, like a mobile nutrient-recovering toilet unit in the field use have been tested (Malila et al., 2019a).

Food production, including the whole value chain, is one of the key factors in lowering carbon emissions. Also, the source of protein in our diet has importance. Concrete outcomes of the research projects are for example the initiation of Tampere Hall roof plantations and edible park of the Lielahti Manor, in the project where urban agriculture was implemented and pilot plantations established in the city of Tampere (Asikainen et al., 2017). Use of local and seasonal food has been promoted by recipe development and piloting, with special emphasis on seasonal ingredients and local foodstuffs (Elinvoimaa lähiruoasta, 2018). In addition, new sustainable food products, menus and business models have been created to Särkänniemi area as an outcome of carbon-neutral food chains development, which is more widely described also in this journal (Heikkilä & Lindell, 2019; Heikkilä & Lindell, 2020). Together with five research partners, know-how of economically feasible insect production has been developed. Towards insect bioeconomy project, in which TAMK participated, searched for the latest know-how on biomass, that could be utilized in insect rearing systems, profitability of production, and the cornerstones of the economy, new business models, insect product development, consumer preferences, and the health and welfare effects of insect products (Vihuri & Wickman-Viitala, 2020).

Food and packaging industries aim at using sustainable packages and replacements for plastics in packaging. In Finland, oat paper is the first circular economy package application utilizing side streams of the food industry (Häggblom & Viitaharju, 2020). Other side streams like barley shells, mash, peels of carrots and potatoes are the next target of the research (Ecodesigncircle, 2020). Alongside technical development of innovative materials, an important activity has been a dialogue between creative industries and multidisciplinary student teams. This has resulted in bio-based package and service innovations commissioned by the industry (Häggblom et al., 2017). To promote low carbon bio-based society, a testing environment for biodegradability and compostability of materials and products is important. A testing environment has been built and is available for research and testing of biodegradable materials and products (PIHI, 2020).

Figure 1. How would it sound to you to purchase an oat bread which is packed in a bag partly made of oat shell waste? This might be possible in near future, while first pilot bags have already been manufactured.
Figure 1. How would it sound to you to purchase an oat bread which is packed in a bag partly made of oat shell waste? This might be possible in near future, while first pilot bags have already been manufactured.

Actions are needed to reach the next level

Frølund and coworkers have studied key elements of collaboration between universities and companies for a long time. They underline that collaboration between companies and universities is a critical driver of the innovation economy, and that even smaller, more regionally oriented companies have come to believe that universities are key ecosystem stakeholders in supporting and shaping their regional economies. However, the distributed governance of expertise at universities is recognized one of the key problems in university-industry collaboration (Frølund et al., 2018). To tackle the challenge of distributed governance, need for regular stakeholder meetings in the Campus was identified but also the need to walk off campus. Universities of applied sciences are in the core of regional innovation ecosystems, and although there is never enough communication and interaction, regular and jointly agreed meetings make stakeholder collaboration systematic.

Four types of actions were identified to increase the impact of the research and development in the field of circular economy:

  1. Better communication of present RDI strengths and competences
  2. Strengthening stakeholder relationships and analysis of their needs
  3. Strengthening relationships with international partners and customers
  4. Conceptualizing ideas based on the needs of the stakeholders.

To sum up, mapping of one’s own expertise and experts, more communication and interaction with national and international stakeholders, and development of one’s own processes to support flexible collaboration are key factors. This might look self-evident but still needs a systematic approach and resources, which are now available at TAMK.

The next level in practice

Previous projects and studies have revealed that there is a lot of unused potential in Pirkanmaa region to promote circular economy in several fields of industry (Halonen et al., 2017; Ramboll, 2016). Also, there is a lot of opportunities to develop circular economy service business, while so far the focus has been mostly on material circulation and less on services (Ramboll, 2016). Coordination of FISS (Finnish Industrial Symbiosis System) regional workshops is not yet organized in Pirkanmaa region, which is an opportunity for TAMK to take the leading role. Purpose of the workshops is to find companies and other actors in the region, which have exploitable waste and side streams to be used as a resource for new products and services. Regionally, industrial symbiosis put circular economy in practice.

Construction industry is a significant field of business in the national economy. TAMK is one of the biggest and strongest construction and civil engineering educator in Finland. For promotion of sustainable circular bioeconomy, there are already research actions, for example in monitoring and measurement of hazardous substances in construction materials, which is crucial in demolition and renovation projects, in terms of occupational and environmental health (Viskari et al., 2018, 2019). Further actions will include research and development in carbon neutral construction, promotion of wood construction and taking sustainable housing and human viewpoint into focus. New initiatives have already been mapped and cooperation with construction companies, urban development actors and cities are initiated.

Combining nutrient recycling with new nutrient recovery technologies in an urban environment, creating and initiating sustainable food systems and packaging materials, and promoting new entrepreneurship, products and business opportunities around these themes will be key drivers in the future actions of the research group. For example, in the city of Tampere the new housing area of Hiedanranta and development of Särkänniemi Theme Park sustainable food street offer extremely innovative live labs for the development.

Figure 2. Implementation of alternative sanitation technologies and nutrient recovery in Hiedanranta area in the City of Tampere (Photo: Trung Dang).
Figure 2. Implementation of alternative sanitation technologies and nutrient recovery in Hiedanranta area in the City of Tampere (Photo: Trung Dang).

The way forward

The research group approach is a development project as such. One of the goals is to create continuity of research topics instead of separate projects. Collecting TAMK’s circular bioeconomy projects together made existing capacity “visible”. Analysis of the content of the projects resulted in identification of “from table to table” research theme, presented in this article. Further, six different internal stakeholder groups have been identified also promoting sustainability. TAMK’s role in the regional innovation ecosystem is important not only through RDI activities but also because of the capacity of international networks and collaboration.

The aims, actions and opportunities we have described here do not correspond with the traditional research group. We have deliberately chosen the strategy with strong stakeholder involvement, both inside and outside the organization. We want to strengthen TAMK’s impact as a promoter of circular bioeconomy, which we associate with proactivity, co-creation and even crazy multidisciplinary ideas with a strong involvement of students as innovators. In our vision, solutions for challenges in the future circular society are not conventional, and that is why new multidisciplinary and multi-stakeholder platforms are needed.


Silja Kostia, Principal Lecturer, Ph.D., Tampere University of Applied Sciences, silja.kostia(at)

Ulla Häggblom, Principal Lecturer, Dr. Sc. (Tech.), Tampere University of Applied Sciences, ulla.haggblom(at)

Erkki Kiviniemi, Senior Lecturer, M.Sc. (Tech.), Tampere University of Applied Sciences, erkki.kiviniemi(at)

Mikael Lindell, Senior Lecturer, M.Sc. (Econ.), mikael.lindell(at)

Riitta Vihuri, Tampere University of Applied Sciences, Senior Lecturer, M.Sc. (Econ.), Tampere University of Applied Sciences, riitta.vihuri(at)

Eeva-Liisa Viskari, Impact Leader, Ph.D., Tampere University of Applied Sciences, eeva-liisa.viskari(at)

Asikainen, E., Björkman, F., Grobler, G., Haapamäki, S., Kloet, M., Mattila, A.-M., Pakula, S., Tuukkanen, K., Viskari, E.-L. (2017). Kunnioitusta raaka-ainetta kohtaan – viljeltyjä tarinoita ruokapöytiin. KIVIREKI-hankkeen julkaisu. Käymäläseura Huussi ry, Tampere. Available at:

Ecodesigncircle. (2020). Project’s www pages (read 30.4.2020)

Elinvoimaa lähiruoasta. (2018). Lähiruokareseptejä. Elinvoimaa lähiruoasta – kumppanuudet lähiruoan hankinnoissa –hanke. Available at:

Frølund, L., Murray, F. & Riedel, M. (2018). Developing Successful Strategic Partnerships With Universities. MIT Sloan Management Review. Magazine Winter 2018, Issue Research Feature.

Halonen, E., Alakerttula, J., Lanz, M., & Seppänen, M. (2017). Pirkanmaan kiertotalouden innovaatiotoiminnan nykytila. Pirkanmaan liitto. Available:

Heikkilä, T. & Lindell, M. (2019). Kestävän matkailun hub – Uusi Särkänniemi. Teoksessa A. Mäntysaari, A. Törn-Laapio & H. Siltanen (toim.),  Yhteiskehittämisestä kilpailuetua matkailu- ja ravitsemisalalla. Jyväskylän ammattikorkeakoulun julkaisuja 270.

Heikkilä, T. & Lindell, M. (2020). Kestävää liiketoimintaa ruokapalveluissa. UAS Journal 2/2020.

Häggblom, U., Damski, V. & Vepsäläinen, A. (2017). Hiilinielu Design Studio – Muotoilu kohtaa biotalouden. Tampereen ammattikorkeakoulun julkaisuja B:96. Available:

Malila, R., Viskari, E.-L., Kallio, J. (2019a). Virtsan ravinteet kiertoon – MORTTI -hankkeen loppuraportti. Suomen ympäristökeskuksen raportteja 49/2019. ISBN 978-952-11-5107-1, ISSN 1796-1726. Available:

Malila, R., Viskari, E.-L., Lehtoranta, S. (2019b). The role of source separation in nutrient recovery – comparison of alternative wastewater treatment systems. Journal of Cleaner Production. 219: 350-358. 10 February 2019.

PIHI. (2020). Project’s www-pages. (read 30.4.2020)

Ramboll. (2016). Bio- ja kiertotalouden hankkeet, osaaminen ja haasteet Tampereen kaupunkiseudulla ja Pirkanmaalla. End-of-project report. Available:

Vihuri, R. & Wickman-Viitala, T. (2020). Hyönteistoimialan liiketoiminnan kehittäminen. TAMKjournal 24.4.2020. Available:

Viskari, E.-L., Grobler, G., Karimäki, K., Gorbatova, A., Vilpas, R. & Lehtoranta, S. (2018). Nitrogen Recovery With Source Separation of Human Urine—Preliminary Results of Its Fertiliser Potential and Use in Agriculture. Frontiers in Sustainable Food Systems. 2:1-14, 28 June 2018.

Viskari, E.-L., Kauranen, H., Nieminen, M., Nippala, E., Tuominen, E.-L. & Honkala, I. (2018). Palosuoja-aine HBCD rakennuseristeissä ja pakkausmateriaaleissa ‒ esiintyminen, tunnistaminen ja turvallinen käsittely. Tampereen ammattikorkeakoulun julkaisuja. Sarja B. Raportteja 111. Tampere 2018. Available:

Viskari, E.-L., Kauranen, H., Nieminen, M., Nippala, E., Tuominen, E.-L. & Honkala, I. (2019). Palonsuoja-aine on kierrättäjän pulma. Uusiouutiset 2/2019, 36–37.

Promoting sustainability by using collaboration tools

Author: Liisa Routaharju.

According to the Finnish Environment Institute, a bulk of each Finns carbon footprint is caused by travel. A very simple and effective way of reducing this is reducing the need to travel. One method for achieving this is organizing meetings with the help of collaboration tools that allow discussion, sharing material and content via an internet connection and require no travel. While it’s true that an online meeting doesn’t allow for all the casual interaction of a real life meeting, the benefits have been argued to outweigh the disadvantages.

Kilometers not driven and emissions not discharged

This paper discusses the aspects of online meetings as replacements of face-to-face ones from the perspective of the Circular Economy UAS project. The project begun in April of 2018 with 19 Finnish Universities of Applied Sciences (UAS) joining forces to promote and develop circular economy education in Finland. The work was organized into four working packets, each with a specific focus. My example is that of South-Eastern University of Applied Sciences. Each UAS in the project has allocated work to the different work packets differently, so these estimations do not apply to any other UAS. All the calculations are based on the 41 online meetings attended during year 2019.

Work packet meetings were organized by different UAS representatives around Finland. Typically a meeting would be held at the home location of an organization responsible for arranging it. Instead of calculating the actual distance not traveled, an example of all meetings organized in Helsinki was used, so the distance to each was about 230 km one way. By car (depending on vehicle, this calculation is made using emissions 108 gCO2/km) this would mean over two million grams of CO2 not emitted during year 2019. It is only fair to compare this number to the emissions of train travel, as longer distances are likely to be traveled by train. According to BBC average passenger train emissions are 41g CO2/km, which would amount to emissions of 773 260g CO2. Point here is, that even that amount of emissions was made unnecessary by the use of collaboration tools.

Time not spent traveling

Typical duration of an online meeting was one to two hours, yet with travel time a meeting in Helsinki would take a day’s worth of working hours. Train travel would allow working while traveling, so the meeting would probably not be the only productive activity that day. Online meetings, however, allow several meetings during the same day, even in different locations.

A clear benefit of online meetings is risk reduction. Personal ergonomics aside, the risks exposed to while traveling are likely to be higher than those exposed to at the comfort of your office or home. As I’m writing this, online meetings have become the new normal due to the restrictions set to limit the spreading of the COVID-19 pandemic. Even those of us previously reluctant to participate online meetings are forced to look for ways to collaborate without meeting in person. Could something good come out of this? Could this be the thrust we need to accept the inevitable change?


Liisa Routaharju, Master of Engineering, Senior Lecturer, South-Eastern Finland University of Applied Sciences, liisa.routaharju(at)

BBC website at, read on 11.3.2020

Circular Economy UAS website at, read on 23.4.2020

Finnish Environment Institute website at , read 11.3.2020